2022
Next-Generation Sequencing in Lung Cancer Patients: A Comparative Approach in NSCLC and SCLC Mutational Landscapes
POP-BICA, Cecilia, Cristina Alexandra CIOCAN, Cornelia BRAICU, Antonia HARANGUS, Marioara SIMON et. al.Základní údaje
Originální název
Next-Generation Sequencing in Lung Cancer Patients: A Comparative Approach in NSCLC and SCLC Mutational Landscapes
Autoři
POP-BICA, Cecilia, Cristina Alexandra CIOCAN, Cornelia BRAICU, Antonia HARANGUS, Marioara SIMON, Andreea NUTU, Laura Ancuta POP, Ondřej SLABÝ (203 Česká republika, garant, domácí), Atanas G ATANASOV, Radu PIRLOG, Al Hajjar NADIM a Ioana BERINDAN-NEAGOE
Vydání
Journal of Personalized Medicine, Basel, MDPI, 2022, 2075-4426
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30218 General and internal medicine
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.508 v roce 2021
Kód RIV
RIV/00216224:14740/22:00128637
Organizační jednotka
Středoevropský technologický institut
UT WoS
000776366700001
Klíčová slova anglicky
non-small-cell lung cancer; small-cell lung cancer; targeted sequencing; patients
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 14. 2. 2023 15:22, Mgr. Pavla Foltynová, Ph.D.
Anotace
V originále
Background: Lung cancer remains one of the most diagnosed malignancies, being the second most diagnosed cancer, while still being the leading cause of cancer-related deaths. Late diagnosis remains a problem, alongside the high mutational burden encountered in lung cancer. Methods: We assessed the genetic profile of cancer genes in lung cancer using The Cancer Genome Atlas (TCGA) datasets for mutations and validated the results in a separate cohort of 32 lung cancer patients using tumor tissue and whole blood samples for next-generation sequencing (NGS) experiments. Another separate cohort of 32 patients was analyzed to validate some of the molecular alterations depicted in the NGS experiment. Results: In the TCGA analysis, we identified the most commonly mutated genes in each lung cancer dataset, with differences among the three histotypes analyzed. NGS analysis revealed TP53, CSF1R, PIK3CA, FLT3, ERBB4, and KDR as being the genes most frequently mutated. We validated the c.1621A>C mutation in KIT. The correlation analysis indicated negative correlation between adenocarcinoma and altered PIK3CA (r = -0.50918; p = 0.0029). TCGA survival analysis indicated that NRAS and IDH2 (LUAD), STK11 and TP53 (LUSC), and T53 (SCLC) alterations are correlated with the survival of patients. Conclusions: The study revealed differences in the mutational landscape of lung cancer histotypes.