2022
Different phenotypic outcome due to site-specific phosphorylation in the cancer-associated NQO1 enzyme studied by phosphomimetic mutations
PACHECO-GARCIA, Juan Luis, Ernesto ANOZ-CARBONELL, Dmitry S LOGINOV, Pavla VANKOVA, Eduardo SALIDO et. al.Základní údaje
Originální název
Different phenotypic outcome due to site-specific phosphorylation in the cancer-associated NQO1 enzyme studied by phosphomimetic mutations
Autoři
PACHECO-GARCIA, Juan Luis, Ernesto ANOZ-CARBONELL, Dmitry S LOGINOV, Pavla VANKOVA, Eduardo SALIDO, Petr MAN, Milagros MEDINA, Rogelio PALOMINO-MORALES a Angel L PEY
Vydání
Archives of biochemistry and biophysics, New York, Academic Press, 2022, 0003-9861
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10608 Biochemistry and molecular biology
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.900
Kód RIV
RIV/00216224:14740/22:00128774
Organizační jednotka
Středoevropský technologický institut
UT WoS
000867178000002
Klíčová slova anglicky
Flavoprotein; Phosphorylation; Structure-function relationships
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 28. 2. 2023 19:11, Mgr. Pavla Foltynová, Ph.D.
Anotace
V originále
Protein phosphorylation is a common phenomenon in human flavoproteins although the functional consequences of this site-specific modification are largely unknown. Here, we evaluated the effects of site-specific phosphorylation (using phosphomimetic mutations at sites S40, S82 and T128) on multiple functional aspects as well as in the structural stability of the antioxidant and disease-associated human flavoprotein NQO1 using biophysical and biochemical methods. In vitro biophysical studies revealed effects of phosphorylation at different sites such as decreased binding affinity for FAD and structural stability of its binding site (S82), conformational stability (S40 and S82) and reduced catalytic efficiency and functional cooperativity (T128). Local stability measurements by H/D exchange in different ligation states provided structural insight into these effects. Transfection of eukaryotic cells showed that phosphorylation at sites S40 and S82 may reduce steady-levels of NQO1 protein by enhanced proteasome-induced degradation. We show that site-specific phosphorylation of human NQO1 may cause pleiotropic and counterintuitive effects on this multifunctional protein with potential implications for its relationships with human disease. Our approach allows to establish relationships between site-specific phosphorylation, functional and structural stability effects in vitro and inside cells paving the way for more detailed analyses of phosphorylation at the flavoproteome scale.
Návaznosti
90127, velká výzkumná infrastruktura |
|