2023
Radiopaque Nanorobots as Magnetically Navigable Contrast Agents for Localized In Vivo Imaging of the Gastrointestinal Tract
ORAL, Cagatay M., Martina USSIA, Mario URSO, Jiří SALÁT, Adam NOVOBILSKY et. al.Základní údaje
Originální název
Radiopaque Nanorobots as Magnetically Navigable Contrast Agents for Localized In Vivo Imaging of the Gastrointestinal Tract
Autoři
ORAL, Cagatay M., Martina USSIA, Mario URSO, Jiří SALÁT (203 Česká republika), Adam NOVOBILSKY, Michal STEFANIK, Daniel RŮŽEK (203 Česká republika, domácí) a Martin PUMERA (garant)
Vydání
Advanced Healthcare Materials, Wiley, 2023, 2192-2640
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10405 Electrochemistry
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 10.000 v roce 2022
Kód RIV
RIV/00216224:14310/23:00130535
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000903078100001
Klíčová slova anglicky
computed tomography; gastrointestinal tract; magnetic actuation; medical imaging; nanomotors; nanoswimmers; tracking
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 21. 4. 2023 09:42, Mgr. Marie Šípková, DiS.
Anotace
V originále
Magnetic nanorobots offer wireless navigation capability in hard-to-reach areas of the human body for targeted therapy and diagnosis. Though in vivo imaging is required for guidance of the magnetic nanorobots toward the target areas, most of the imaging techniques are inadequate to reveal the potential locomotion routes. This work proposes the use of radiopaque magnetic nanorobots along with microcomputed tomography (microCT) for localized in vivo imaging applications. The nanorobots consist of a contrast agent, barium sulfate (BaSO4), magnetized by the decoration of magnetite (Fe3O4) particles. The magnetic features lead to actuation under rotating magnetic fields and enable precise navigation in a microfluidic channel used to simulate confined spaces of the body. In this channel, the intrinsic radiopacity of the nanorobots also provides the possibility to reveal the internal structures by X-ray contrast. Furthermore, in vitro analysis indicates nontoxicity of the nanorobots. In vivo experiments demonstrate localization of the nanorobots in a specific part of the gastrointestinal (GI) tract upon the influence of the magnetic field, indicating the efficient control even in the presence of natural peristaltic movements. The nanorobots reported here highlight that smart nanorobotic contrast agents can improve the current imaging-based diagnosis techniques by providing untethered controllability in vivo.