J 2023

Radiopaque Nanorobots as Magnetically Navigable Contrast Agents for Localized In Vivo Imaging of the Gastrointestinal Tract

ORAL, Cagatay M., Martina USSIA, Mario URSO, Jiří SALÁT, Adam NOVOBILSKY et. al.

Základní údaje

Originální název

Radiopaque Nanorobots as Magnetically Navigable Contrast Agents for Localized In Vivo Imaging of the Gastrointestinal Tract

Autoři

ORAL, Cagatay M., Martina USSIA, Mario URSO, Jiří SALÁT (203 Česká republika), Adam NOVOBILSKY, Michal STEFANIK, Daniel RŮŽEK (203 Česká republika, domácí) a Martin PUMERA (garant)

Vydání

Advanced Healthcare Materials, Wiley, 2023, 2192-2640

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10405 Electrochemistry

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 10.000 v roce 2022

Kód RIV

RIV/00216224:14310/23:00130535

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000903078100001

Klíčová slova anglicky

computed tomography; gastrointestinal tract; magnetic actuation; medical imaging; nanomotors; nanoswimmers; tracking

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 21. 4. 2023 09:42, Mgr. Marie Šípková, DiS.

Anotace

V originále

Magnetic nanorobots offer wireless navigation capability in hard-to-reach areas of the human body for targeted therapy and diagnosis. Though in vivo imaging is required for guidance of the magnetic nanorobots toward the target areas, most of the imaging techniques are inadequate to reveal the potential locomotion routes. This work proposes the use of radiopaque magnetic nanorobots along with microcomputed tomography (microCT) for localized in vivo imaging applications. The nanorobots consist of a contrast agent, barium sulfate (BaSO4), magnetized by the decoration of magnetite (Fe3O4) particles. The magnetic features lead to actuation under rotating magnetic fields and enable precise navigation in a microfluidic channel used to simulate confined spaces of the body. In this channel, the intrinsic radiopacity of the nanorobots also provides the possibility to reveal the internal structures by X-ray contrast. Furthermore, in vitro analysis indicates nontoxicity of the nanorobots. In vivo experiments demonstrate localization of the nanorobots in a specific part of the gastrointestinal (GI) tract upon the influence of the magnetic field, indicating the efficient control even in the presence of natural peristaltic movements. The nanorobots reported here highlight that smart nanorobotic contrast agents can improve the current imaging-based diagnosis techniques by providing untethered controllability in vivo.