2023
Classification of Adolescents' Risky Behavior in Instant Messaging Conversations
PLHÁK, Jaromír, Ondřej SOTOLÁŘ, Michaela LEBEDÍKOVÁ a David ŠMAHELZákladní údaje
Originální název
Classification of Adolescents' Risky Behavior in Instant Messaging Conversations
Autoři
PLHÁK, Jaromír (203 Česká republika, garant, domácí), Ondřej SOTOLÁŘ (203 Česká republika, domácí), Michaela LEBEDÍKOVÁ (203 Česká republika, domácí) a David ŠMAHEL (203 Česká republika, domácí)
Vydání
https://proceedings.mlr.press, 26th International Conference on Artificial Intelligence and Statistics, AISTATS 2023, od s. 2390-2404, 15 s. 2023
Nakladatel
ML Research Press
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/00216224:14330/23:00130551
Organizační jednotka
Fakulta informatiky
ISSN
Klíčová slova anglicky
adolescents; smartphones; machine learning; risky behavior; instant messaging
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 8. 4. 2024 16:50, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Previous research on detecting risky online behavior has been rather scattered, typically identifying single risks in online samples. To our knowledge, the presented research is the first that presents a process of building models that can efficiently detect the following four online risky behavior: (1) aggression, harassment, hate; (2) mental health; (3) use of alcohol, and drugs; and (4) sexting. Furthermore, the corpora in this research are unique because of the usage of private instant messaging conversations in the Czech language provided by adolescents. The combination of publicly unavailable and unique data with high-quality annotations of specific psychological phenomena allowed us for precise detection using transformer machine learning models that can handle sequential data and involve the context of utterances. The impact of the context length and text augmentation on model efficiency is discussed in detail. The final model provides promising results with an acceptable F1 score. Therefore, we believe that the model could be used in various applications, e.g., parental applications, chatbots, or services provided by Internet providers. Future research could investigate the usage of the model in other languages.
Návaznosti
GX19-27828X, projekt VaV |
| ||
MUNI/A/1433/2022, interní kód MU |
|