2023
Text-to-Motion Retrieval: Towards Joint Understanding of Human Motion Data and Natural Language
MESSINA, Nicola, Jan SEDMIDUBSKÝ, Falchi FABRIZIO a Tomáš REBOKZákladní údaje
Originální název
Text-to-Motion Retrieval: Towards Joint Understanding of Human Motion Data and Natural Language
Autoři
MESSINA, Nicola (380 Itálie), Jan SEDMIDUBSKÝ (203 Česká republika, garant, domácí), Falchi FABRIZIO (380 Itálie) a Tomáš REBOK (203 Česká republika, domácí)
Vydání
New York, NY, USA, 46th International Conference on Research and Development in Information Retrieval (SIGIR), od s. 2420-2425, 6 s. 2023
Nakladatel
Association for Computing Machinery
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10200 1.2 Computer and information sciences
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/00216224:14330/23:00130552
Organizační jednotka
Fakulta informatiky
ISBN
978-1-4503-9408-6
UT WoS
001118084002091
Klíčová slova anglicky
human motion data;skeleton sequences;CLIP;BERT;deep language models;ViViT;motion retrieval;cross-modal retrieval
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 14. 3. 2024 13:10, doc. RNDr. Jan Sedmidubský, Ph.D.
Anotace
V originále
Due to recent advances in pose-estimation methods, human motion can be extracted from a common video in the form of 3D skeleton sequences. Despite wonderful application opportunities, effective and efficient content-based access to large volumes of such spatio-temporal skeleton data still remains a challenging problem. In this paper, we propose a novel content-based text-to-motion retrieval task, which aims at retrieving relevant motions based on a specified natural-language textual description. To define baselines for this uncharted task, we employ the BERT and CLIP language representations to encode the text modality and successful spatio-temporal models to encode the motion modality. We additionally introduce our transformer-based approach, called Motion Transformer (MoT), which employs divided space-time attention to effectively aggregate the different skeleton joints in space and time. Inspired by the recent progress in text-to-image/video matching, we experiment with two widely-adopted metric-learning loss functions. Finally, we set up a common evaluation protocol by defining qualitative metrics for assessing the quality of the retrieved motions, targeting the two recently-introduced KIT Motion-Language and HumanML3D datasets. The code for reproducing our results is available here: https://github.com/mesnico/text-to-motion-retrieval.
Návaznosti
EF16_019/0000822, projekt VaV |
|