2023
Passive Operating System Fingerprinting Revisited: Evaluation and Current Challenges
LAŠTOVIČKA, Martin, Martin HUSÁK, Petr VELAN, Tomáš JIRSÍK, Pavel ČELEDA et. al.Základní údaje
Originální název
Passive Operating System Fingerprinting Revisited: Evaluation and Current Challenges
Autoři
LAŠTOVIČKA, Martin (203 Česká republika, garant, domácí), Martin HUSÁK (203 Česká republika, domácí), Petr VELAN (203 Česká republika, domácí), Tomáš JIRSÍK (203 Česká republika, domácí) a Pavel ČELEDA (203 Česká republika, domácí)
Vydání
Computer Networks, Netherlands, Elsevier, 2023, 1389-1286
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 5.600 v roce 2022
Kód RIV
RIV/00216224:14610/23:00130617
Organizační jednotka
Ústav výpočetní techniky
UT WoS
000987230300001
Klíčová slova anglicky
OS fingerprinting; network monitoring; network management; cybersecurity; machine learning; survey
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 16. 3. 2024 14:14, doc. Ing. Pavel Čeleda, Ph.D.
Anotace
V originále
Fingerprinting a host's operating system is a very common yet precarious task in network, asset, and vulnerability management. Estimating the operating system via network traffic analysis may leverage TCP/IP header parameters or complex analysis of hosts' behavior using machine learning. However, the existing approaches are becoming obsolete as network traffic evolves which makes the problem still open. This paper discusses various approaches to passive OS fingerprinting and their evolution in the past twenty years. We illustrate their usage, compare their results in an experiment, and list challenges faced by the current fingerprinting approaches. The hosts' differences in network stack settings were initially the most important information source for OS fingerprinting, which is now complemented by hosts' behavioral analysis and combined approaches backed by machine learning. The most impactful reasons for this evolution were the Internet-wide network traffic encryption and the general adoption of privacy-preserving concepts in application protocols. Other changes, such as the increasing proliferation of web applications on handheld devices, raised the need to identify these devices in the networks, for which we may use the techniques of OS fingerprinting.
Návaznosti
EF16_019/0000822, projekt VaV |
|