2023
Privacy risks of whole-slide image sharing in digital pathology
HOLUB, Petr, Heimo MÜLLER, Tomáš BÍL, Luca PIREDDU, Markus PLASS et. al.Základní údaje
Originální název
Privacy risks of whole-slide image sharing in digital pathology
Autoři
HOLUB, Petr (203 Česká republika, garant, domácí), Heimo MÜLLER, Tomáš BÍL (203 Česká republika, domácí), Luca PIREDDU, Markus PLASS, Fabian PRASSER, Irene SCHLÜNDER, Kurt ZATLOUKAL, Rudolf NENUTIL (203 Česká republika) a Tomáš BRÁZDIL (203 Česká republika, domácí)
Vydání
Nature Communications, 2023, 2041-1723
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 16.600 v roce 2022
Kód RIV
RIV/00216224:14610/23:00130727
Organizační jednotka
Ústav výpočetní techniky
UT WoS
001001562200003
Klíčová slova anglicky
digital pathology; whole slide images; anonymity; privacy risks; data sharing
Změněno: 5. 4. 2024 11:00, Mgr. Alena Mokrá
Anotace
V originále
Access to large volumes of so-called whole-slide images—high-resolution scans of complete pathological slides—has become a cornerstone of the development of novel artificial intelligence methods in pathology for diagnostic use, education/training of pathologists, and research. Nevertheless, a methodology based on risk analysis for evaluating the privacy risks associated with sharing such imaging data and applying the principle “as open as possible and as closed as necessary” is still lacking. In this article, we develop a model for privacy risk analysis for whole-slide images which focuses primarily on identity disclosure attacks, as these are the most important from a regulatory perspective. We introduce a taxonomy of whole-slide images with respect to privacy risks and mathematical model for risk assessment and design . Based on this risk assessment model and the taxonomy, we conduct a series of experiments to demonstrate the risks using real-world imaging data. Finally, we develop guidelines for risk assessment and recommendations for low-risk sharing of whole-slide image data.
Návaznosti
90125, velká výzkumná infrastruktura |
|