2023
Boolean network sketches: a unifying framework for logical model inference
BENEŠ, Nikola, Luboš BRIM, Ondřej HUVAR, Samuel PASTVA, David ŠAFRÁNEK et. al.Základní údaje
Originální název
Boolean network sketches: a unifying framework for logical model inference
Autoři
BENEŠ, Nikola (203 Česká republika, domácí), Luboš BRIM (203 Česká republika, domácí), Ondřej HUVAR (203 Česká republika, domácí), Samuel PASTVA (203 Česká republika) a David ŠAFRÁNEK (203 Česká republika, garant, domácí)
Vydání
Bioinformatics, 2023, 1367-4803
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 5.800 v roce 2022
Kód RIV
RIV/00216224:14330/23:00130796
Organizační jednotka
Fakulta informatiky
UT WoS
000976610800001
Klíčová slova anglicky
Boolean Networks; model inference; logical modelling
Změněno: 8. 4. 2024 15:38, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
MOTIVATION: The problem of model inference is of fundamental importance to systems biology. Logical models (e.g. Boolean networks; BNs) represent a computationally attractive approach capable of handling large biological networks. The models are typically inferred from experimental data. However, even with a substantial amount of experimental data supported by some prior knowledge, existing inference methods often focus on a small sample of admissible candidate models only. RESULTS: We propose Boolean network sketches as a new formal instrument for the inference of Boolean networks. A sketch integrates (typically partial) knowledge about the network's topology and the update logic (obtained through, e.g. a biological knowledge base or a literature search), as well as further assumptions about the properties of the network's transitions (e.g. the form of its attractor landscape), and additional restrictions on the model dynamics given by the measured experimental data. Our new BNs inference algorithm starts with an 'initial' sketch, which is extended by adding restrictions representing experimental data to a 'data-informed' sketch and subsequently computes all BNs consistent with the data-informed sketch. Our algorithm is based on a symbolic representation and coloured model-checking. Our approach is unique in its ability to cover a broad spectrum of knowledge and efficiently produce a compact representation of all inferred BNs. We evaluate the method on a non-trivial collection of real-world and simulated data.
Návaznosti
GA22-10845S, projekt VaV |
| ||
MUNI/A/1081/2022, interní kód MU |
|