2023
Umpalumpa: a framework for efficient execution of complex image processing workloads on heterogeneous nodes
STŘELÁK, David, David MYŠKA, Filip PETROVIČ, Jan POLÁK, Jaroslav OĽHA et. al.Základní údaje
Originální název
Umpalumpa: a framework for efficient execution of complex image processing workloads on heterogeneous nodes
Autoři
STŘELÁK, David (203 Česká republika, domácí), David MYŠKA (203 Česká republika, domácí), Filip PETROVIČ (703 Slovensko, domácí), Jan POLÁK (203 Česká republika, domácí), Jaroslav OĽHA (703 Slovensko, domácí) a Jiří FILIPOVIČ (203 Česká republika, domácí)
Vydání
Computing, Springer, 2023, 0010-485X
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Rakousko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.700 v roce 2022
Kód RIV
RIV/00216224:14610/23:00131054
Organizační jednotka
Ústav výpočetní techniky
UT WoS
001010699200001
Klíčová slova anglicky
Image processing; task-based systems; auto-tuning; data-aware architecture; CUDA
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 21. 3. 2024 08:53, doc. RNDr. Jiří Filipovič, Ph.D.
Anotace
V originále
Modern computers are typically heterogeneous devices—besides the standard central processing unit (CPU), they commonly include an accelerator such as a graphics processing unit (GPU). However, exploiting the full potential of such computers is challenging, especially when complex workloads consisting of multiple computationally demanding tasks are to be processed. This paper proposes a framework called Umpalumpa, which aims to manage complex workloads on heterogeneous computers. Umpalumpa combines three aspects that ease programming and optimize code performance. Firstly, it implements a data-centric design, where data are described by their physical properties (e. g., location in memory, size) and logical properties (e. g., dimensionality, shape, padding). Secondly, Umpalumpa utilizes task-based parallelism to schedule tasks on heterogeneous nodes. Thirdly, tasks can be dynamically autotuned on a source code level according to the hardware where the task is executed and the processed data. Altogether, Umpalumpa allows for implementing a complex workload, which is automatically executed on CPUs and accelerators, and allows autotuning to maximize the performance with the given hardware and data input. Umpalumpa focuses on image processing workloads, but the concept is generic and can be extended to different types of workloads. We demonstrate the usability of the proposed framework on two previously accelerated applications from cryogenic electron microscopy: 3D Fourier reconstruction and Movie alignment. We show that, compared to the original implementations, Umpalumpa reduces the complexity and improves the maintainability of the main applications’ loops while improving performance through automatic memory management and autotuning of the GPU kernels.
Návaznosti
LM2018140, projekt VaV |
|