J 2023

Umpalumpa: a framework for efficient execution of complex image processing workloads on heterogeneous nodes

STŘELÁK, David, David MYŠKA, Filip PETROVIČ, Jan POLÁK, Jaroslav OĽHA et. al.

Základní údaje

Originální název

Umpalumpa: a framework for efficient execution of complex image processing workloads on heterogeneous nodes

Autoři

STŘELÁK, David (203 Česká republika, domácí), David MYŠKA (203 Česká republika, domácí), Filip PETROVIČ (703 Slovensko, domácí), Jan POLÁK (203 Česká republika, domácí), Jaroslav OĽHA (703 Slovensko, domácí) a Jiří FILIPOVIČ (203 Česká republika, domácí)

Vydání

Computing, Springer, 2023, 0010-485X

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Rakousko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 3.700 v roce 2022

Kód RIV

RIV/00216224:14610/23:00131054

Organizační jednotka

Ústav výpočetní techniky

UT WoS

001010699200001

Klíčová slova anglicky

Image processing; task-based systems; auto-tuning; data-aware architecture; CUDA

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 21. 3. 2024 08:53, doc. RNDr. Jiří Filipovič, Ph.D.

Anotace

V originále

Modern computers are typically heterogeneous devices—besides the standard central processing unit (CPU), they commonly include an accelerator such as a graphics processing unit (GPU). However, exploiting the full potential of such computers is challenging, especially when complex workloads consisting of multiple computationally demanding tasks are to be processed. This paper proposes a framework called Umpalumpa, which aims to manage complex workloads on heterogeneous computers. Umpalumpa combines three aspects that ease programming and optimize code performance. Firstly, it implements a data-centric design, where data are described by their physical properties (e. g., location in memory, size) and logical properties (e. g., dimensionality, shape, padding). Secondly, Umpalumpa utilizes task-based parallelism to schedule tasks on heterogeneous nodes. Thirdly, tasks can be dynamically autotuned on a source code level according to the hardware where the task is executed and the processed data. Altogether, Umpalumpa allows for implementing a complex workload, which is automatically executed on CPUs and accelerators, and allows autotuning to maximize the performance with the given hardware and data input. Umpalumpa focuses on image processing workloads, but the concept is generic and can be extended to different types of workloads. We demonstrate the usability of the proposed framework on two previously accelerated applications from cryogenic electron microscopy: 3D Fourier reconstruction and Movie alignment. We show that, compared to the original implementations, Umpalumpa reduces the complexity and improves the maintainability of the main applications’ loops while improving performance through automatic memory management and autotuning of the GPU kernels.

Návaznosti

LM2018140, projekt VaV
Název: e-Infrastruktura CZ (Akronym: e-INFRA CZ)
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, e-Infrastruktura CZ