2023
Twin-width of Planar Graphs is at most 8, and at most 6 when Bipartite Planar
HLINĚNÝ, Petr a Jan JEDELSKÝZákladní údaje
Originální název
Twin-width of Planar Graphs is at most 8, and at most 6 when Bipartite Planar
Autoři
HLINĚNÝ, Petr (203 Česká republika, garant, domácí) a Jan JEDELSKÝ (203 Česká republika, domácí)
Vydání
Dagstuhl, Germany, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023), od s. "75:1"-"75:18", 18 s. 2023
Nakladatel
Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Kód RIV
RIV/00216224:14330/23:00131119
Organizační jednotka
Fakulta informatiky
ISBN
978-3-95977-278-5
ISSN
Klíčová slova anglicky
twin-width; planar graph
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 7. 4. 2024 23:06, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Twin-width is a structural width parameter introduced by Bonnet, Kim, Thomassé and Watrigant [FOCS 2020]. Very briefly, its essence is a gradual reduction (a contraction sequence) of the given graph down to a single vertex while maintaining limited difference of neighbourhoods of the vertices, and it can be seen as widely generalizing several other traditional structural parameters. Having such a sequence at hand allows us to solve many otherwise hard problems efficiently. Graph classes of bounded twin-width, in which appropriate contraction sequences are efficiently constructible, are thus of interest in combinatorics and in computer science. However, we currently do not know in general how to obtain a witnessing contraction sequence of low width efficiently, and published upper bounds on the twin-width in non-trivial cases are often "astronomically large". We focus on planar graphs, which are known to have bounded twin-width (already since the introduction of twin-width), but the first explicit "non-astronomical" upper bounds on the twin-width of planar graphs appeared just a year ago; namely the bound of at most 183 by Jacob and Pilipczuk [arXiv, January 2022], and 583 by Bonnet, Kwon and Wood [arXiv, February 2022]. Subsequent arXiv manuscripts in 2022 improved the bound down to 37 (Bekos et al.), 11 and 9 (both by Hliněný). We further elaborate on the approach used in the latter manuscripts, proving that the twin-width of every planar graph is at most 8, and construct a witnessing contraction sequence in linear time. Note that the currently best lower-bound planar example is of twin-width 7, by Král' and Lamaison [arXiv, September 2022]. We also prove that the twin-width of every bipartite planar graph is at most 6, and again construct a witnessing contraction sequence in linear time.
Návaznosti
MUNI/A/1081/2022, interní kód MU |
| ||
MUNI/A/1433/2022, interní kód MU |
| ||
MUNI/I/1677/2018, interní kód MU |
|