2023
Evaluation of the Cross-lingual Embedding Models from the Lexicographic Perspective
DENISOVÁ, Michaela a Pavel RYCHLÝZákladní údaje
Originální název
Evaluation of the Cross-lingual Embedding Models from the Lexicographic Perspective
Autoři
DENISOVÁ, Michaela (703 Slovensko, domácí) a Pavel RYCHLÝ (203 Česká republika, domácí)
Vydání
Brno, Electronic lexicography in the 21st century (eLex 2023): Invisible Lexicography. Proceedings of the eLex 2023 conference, od s. 1-18, 18 s. 2023
Nakladatel
Lexical Computing CZ s.r.o.
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Odkazy
Kód RIV
RIV/00216224:14330/23:00131141
Organizační jednotka
Fakulta informatiky
ISSN
Klíčová slova anglicky
cross-lingual embedding models; bilingual lexicon induction task; retrieving translation equivalents; evaluation
Změněno: 8. 4. 2024 14:11, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Cross-lingual embedding models (CMs) enable us to transfer lexical knowledge across languages. Therefore, they represent a useful approach for retrieving translation equivalents in lexicography. However, these models have been mainly oriented towards the natural language processing (NLP) field, lacking proper evaluation with error evaluation datasets that were compiled automatically. This causes discrepancies between models hindering the correct interpretation of the results. In this paper, we aim to address these issues and make these models more accessible for lexicography by evaluating them from a lexicographic point of view. We evaluate three benchmark CMs on three diverse language pairs: close, distant, and different script languages. Additionally, we propose key parameters that the evaluation dataset should include to meet lexicographic needs, have reproducible results, accurately reflect the performance, and set appropriate parameters during training. Our code and evaluation datasets are publicly available.
Návaznosti
EF19_073/0016943, projekt VaV |
| ||
MUNI/IGA/1285/2021, interní kód MU |
|