2023
Genomic benchmarks: a collection of datasets for genomic sequence classification
GREŠOVÁ, Katarína, Vlastimil MARTINEK, David ČECHÁK, Petr ŠIMEČEK, Panagiotis ALEXIOU et. al.Základní údaje
Originální název
Genomic benchmarks: a collection of datasets for genomic sequence classification
Autoři
GREŠOVÁ, Katarína (703 Slovensko, domácí), Vlastimil MARTINEK (203 Česká republika, domácí), David ČECHÁK (203 Česká republika, domácí), Petr ŠIMEČEK (203 Česká republika, garant, domácí) a Panagiotis ALEXIOU (300 Řecko, domácí)
Vydání
BMC Genomic Data, 2730-6844, BMC, 2023, 2730-6844
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10610 Biophysics
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 1.900 v roce 2022
Kód RIV
RIV/00216224:14740/23:00131330
Organizační jednotka
Středoevropský technologický institut
UT WoS
000981254200001
Klíčová slova anglicky
Genomics; Dataset; Benchmark; Deep learning; Convolutional neural network
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 8. 4. 2024 10:34, Mgr. Eva Dubská
Anotace
V originále
Background Recently, deep neural networks have been successfully applied in many biological fields. In 2020, a deep learning model AlphaFold won the protein folding competition with predicted structures within the error tolerance of experimental methods. However, this solution to the most prominent bioinformatic challenge of the past 50 years has been possible only thanks to a carefully curated benchmark of experimentally predicted protein structures. In Genomics, we have similar challenges (annotation of genomes and identification of functional elements) but currently, we lack benchmarks similar to protein folding competition. Results Here we present a collection of curated and easily accessible sequence classification datasets in the field of genomics. The proposed collection is based on a combination of novel datasets constructed from the mining of publicly available databases and existing datasets obtained from published articles. The collection currently contains nine datasets that focus on regulatory elements (promoters, enhancers, open chromatin region) from three model organisms: human, mouse, and roundworm. A simple convolution neural network is also included in a repository and can be used as a baseline model. Benchmarks and the baseline model are distributed as the Python package ‘genomic-benchmarks’, and the code is available at https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks. Conclusions Deep learning techniques revolutionized many biological fields but mainly thanks to the carefully curated benchmarks. For the field of Genomics, we propose a collection of benchmark datasets for the classification of genomic sequences with an interface for the most commonly used deep learning libraries, implementation of the simple neural network and a training framework that can be used as a starting point for future research. The main aim of this effort is to create a repository for shared datasets that will make machine learning for genomics more comparable and reproducible while reducing the overhead of researchers who want to enter the field, leading to healthy competition and new discoveries.
Návaznosti
GF23-04260L, projekt VaV |
| ||
LM2018140, projekt VaV |
| ||
4431, interní kód MU |
| ||
867414, interní kód MU |
| ||
896172, interní kód MU |
| ||
90267, velká výzkumná infrastruktura |
|