2023
Synergy between imputed genetic pathway and clinical information for predicting recurrence in early stage non-small cell lung cancer
TIMILSINA, Mohan, Dirk FEY, Samuele BUOSI, Adrianna JANIK, Luca COSTABELLO et. al.Základní údaje
Originální název
Synergy between imputed genetic pathway and clinical information for predicting recurrence in early stage non-small cell lung cancer
Autoři
TIMILSINA, Mohan, Dirk FEY, Samuele BUOSI, Adrianna JANIK, Luca COSTABELLO, Enric CARCERENY, Delvys Rodrıguez ABREU, Manuel COBO, Rafael López CASTRO, Reyes BERNABÉ, Pasquale MINERVINI, Maria TORRENTE, Mariano PROVENCIO a Vít NOVÁČEK (203 Česká republika, garant, domácí)
Vydání
Journal for Biomedical Informatics, Elsevier, 2023, 1532-0464
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 4.500 v roce 2022
Kód RIV
RIV/00216224:14330/23:00131336
Organizační jednotka
Fakulta informatiky
UT WoS
001030137400001
Klíčová slova anglicky
Regression; Classification; Imputation; Recurrence; Supervised; Explanation
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 8. 4. 2024 01:11, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Objective: Lung cancer exhibits unpredictable recurrence in low-stage tumors and variable responses to different therapeutic interventions. Predicting relapse in early-stage lung cancer can facilitate precision medicine and improve patient survivability. While existing machine learning models rely on clinical data, incorporating genomic information could enhance their efficiency. This study aims to impute and integrate specific types of genomic data with clinical data to improve the accuracy of machine learning models for predicting relapse in early-stage, non-small cell lung cancer patients. Methods: The study utilized a publicly available TCGA lung cancer cohort and imputed genetic pathway scores into the Spanish Lung Cancer Group (SLCG) data, specifically in 1348 early-stage patients. Initially, tumor recurrence was predicted without imputed pathway scores. Subsequently, the SLCG data were augmented with pathway scores imputed from TCGA. The integrative approach aimed to enhance relapse risk prediction performance. Results: The integrative approach achieved improved relapse risk prediction with the following evaluation metrics: an area under the precision–recall curve (PR-AUC) score of 0.75, an area under the ROC (ROC-AUC) score of 0.80, an F1 score of 0.61, and a Precision of 0.80. The prediction explanation model SHAP (SHapley Additive exPlanations) was employed to explain the machine learning model’s predictions. Conclusion: We conclude that our explainable predictive model is a promising tool for oncologists that addresses an unmet clinical need of post-treatment patient stratification based on the relapse risk while also improving the predictive power by incorporating proxy genomic data not available for specific patients.