2023
Machine Learning–Assisted Recurrence Prediction for Patients With Early-Stage Non–Small-Cell Lung Cancer
JANIK, Adrianna, Maria TORRENTE, Luca COSTABELLO, Virginia CALVO, Brian WALSH et. al.Základní údaje
Originální název
Machine Learning–Assisted Recurrence Prediction for Patients With Early-Stage Non–Small-Cell Lung Cancer
Autoři
JANIK, Adrianna (garant), Maria TORRENTE, Luca COSTABELLO, Virginia CALVO, Brian WALSH, Carlos CAMPS, Sameh K MOHAMED, Ana L ORTEGA, Vít NOVÁČEK (203 Česká republika, domácí), Bartomeu MASSUTÍ, Pasquale MINERVINI, M Rosario GARCIA CAMPELO, Edel del BARCO, Joaquim BOSCH-BARRERA, Ernestina MENASALVAS, Mohan TIMILSINA a Mariano PROVENCIO
Vydání
JCO CLINICAL CANCER INFORMATICS, UNITED STATES, LIPPINCOTT WILLIAMS & WILKINS, 2023, 2473-4276
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 4.200 v roce 2022
Kód RIV
RIV/00216224:14330/23:00131337
Organizační jednotka
Fakulta informatiky
UT WoS
001133302300003
Klíčová slova česky
relapse prediction, machine learning, explainability, health informatics, lung cancer
Klíčová slova anglicky
relapse prediction; machine learning; explainability; health informatics; lung cancer
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 10. 4. 2024 10:40, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
PURPOSE Stratifying patients with cancer according to risk of relapse can personalize their care. In this work, we provide an answer to the following research question: How to use machine learning to estimate probability of relapse in patients with early-stage non–small-cell lung cancer (NSCLC)? MATERIALS AND METHODS For predicting relapse in 1,387 patients with early-stage (I-II) NSCLC from the Spanish Lung Cancer Group data (average age 65.7 years, female 24.8%, male 75.2%), we train tabular and graph machine learning models. We generate automatic explanations for the predictions of such models. For models trained on tabular data, we adopt SHapley Additive exPlanations local explanations to gauge how each patient feature contributes to the predicted outcome. We explain graph machine learning predictions with an example-based method that highlights influential past patients. RESULTS Machine learning models trained on tabular data exhibit a 76% accuracy for the random forest model at predicting relapse evaluated with a 10-fold cross-validation (the model was trained 10 times with different independent sets of patients in test, train, and validation sets, and the reported metrics are averaged over these 10 test sets). Graph machine learning reaches 68% accuracy over a held-out test set of 200 patients, calibrated on a held-out set of 100 patients. CONCLUSION Our results show that machine learning models trained on tabular and graph data can enable objective, personalized, and reproducible prediction of relapse and, therefore, disease outcome in patients with early-stage NSCLC. With further prospective and multisite validation, and additional radiological and molecular data, this prognostic model could potentially serve as a predictive decision support tool for deciding the use of adjuvant treatments in early-stage lung cancer.
Návaznosti
MUNI/G/1763/2020, interní kód MU |
|