2023
Comparative Analysis of Community Detection and Transformer-Based Approaches for Topic Clustering of Scientific Papers
BRETSKO, Daniel, Aliaksandr BELY a Stanislav SOBOLEVSKYZákladní údaje
Originální název
Comparative Analysis of Community Detection and Transformer-Based Approaches for Topic Clustering of Scientific Papers
Autoři
BRETSKO, Daniel (804 Ukrajina, garant, domácí), Aliaksandr BELY (112 Bělorusko, domácí) a Stanislav SOBOLEVSKY (112 Bělorusko, domácí)
Vydání
Cham, 23rd International Conference on Computational Science and Its Applications , ICCSA 2023, od s. 648-660, 13 s. 2023
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Odkazy
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14310/23:00131468
Organizační jednotka
Přírodovědecká fakulta
ISBN
978-3-031-36804-2
ISSN
UT WoS
001166618800042
Klíčová slova anglicky
Network analysis; NLP; Topic clustering; Community detection; Sentence-transformers
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 21. 3. 2024 10:32, Mgr. Marie Šípková, DiS.
Anotace
V originále
We are solving the topic clustering problem, where we need to categorize papers with initially available subjects into more consistent and higher-level topics. We approach the task from two perspectives, one is the traditional network science, where we perform community detection on a subject network with the use of Combo algorithm, and the second is the transformer-based top2vec algorithm which uses sentence-transformer to embed the content of the papers. The comparison between the two approaches was conducted using a dataset of scientific papers on computer science and mathematics collected from the SCOPUS database, and different coherence scores were used as a measure of performance. The results showed that the community detection Combo algorithm was able to achieve a similar coherence score to the transformer-based top2vec. The findings suggest that community detection may be a viable alternative for topic clustering when one has predefined topics, especially when a high coherence score and fast processing time are desired. The paper also discusses the potential advantages and limitations of using Combo for topic clustering and the potential for future work in this area.
Návaznosti
EF16_019/0000822, projekt VaV |
| ||
MUNI/J/0008/2021, interní kód MU |
|