2023
Minimizing an Uncrossed Collection of Drawings
HLINĚNÝ, Petr a Tomáš MASAŘÍKZákladní údaje
Originální název
Minimizing an Uncrossed Collection of Drawings
Autoři
HLINĚNÝ, Petr (203 Česká republika, garant, domácí) a Tomáš MASAŘÍK (203 Česká republika)
Vydání
14465. vyd. Switzerland, Graph Drawing 2023, od s. 110-123, 14 s. 2023
Nakladatel
Springer, Cham
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/23:00131579
Organizační jednotka
Fakulta informatiky
ISBN
978-3-031-49271-6
ISSN
UT WoS
001207939600008
Klíčová slova anglicky
Crossing Number; Planarity; Thickness; Fixed-parameter Tractability
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 27. 6. 2024 11:15, Mgr. Michal Petr
Anotace
V originále
In this paper, we introduce the following new concept in graph drawing. Our task is to find a small collection of drawings such that they all together satisfy some property that is useful for graph visualization. We propose investigating a property where each edge is not crossed in at least one drawing in the collection. We call such collection uncrossed. This property is motivated by a quintessential problem of the crossing number, where one asks for a drawing where the number of edge crossings is minimum. Indeed, if we are allowed to visualize only one drawing, then the one which minimizes the number of crossings is probably the neatest for the first orientation. However, a collection of drawings where each highlights a different aspect of a graph without any crossings could shed even more light on the graph’s structure. We propose two definitions. First, the uncrossed number, minimizes the number of graph drawings in a collection, satisfying the uncrossed property. Second, the uncrossed crossing number, minimizes the total number of crossings in the collection that satisfy the uncrossed property. For both definitions, we establish initial results. We prove that the uncrossed crossing number is NP-hard, but there is an algorithm parameterized by the solution size.