2023
Towards a Benchmarking Suite for Kernel Tuners
TØRRING, Jacob O, van Werkhoven BEN, Filip PETROVIČ, Floris-Jan WILLEMSEN, Jiří FILIPOVIČ et. al.Základní údaje
Originální název
Towards a Benchmarking Suite for Kernel Tuners
Autoři
TØRRING, Jacob O (578 Norsko), van Werkhoven BEN (528 Nizozemské království), Filip PETROVIČ (703 Slovensko, domácí), Floris-Jan WILLEMSEN (528 Nizozemské království), Jiří FILIPOVIČ (203 Česká republika, garant, domácí) a Anne C ELSTER (578 Norsko)
Vydání
neuveden, 2023 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), od s. 724-733, 10 s. 2023
Nakladatel
IEEE
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/00216224:14610/23:00131587
Organizační jednotka
Ústav výpočetní techniky
ISBN
979-8-3503-1199-0
ISSN
UT WoS
001055030700088
Klíčová slova anglicky
autotuning; benchmarking
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 20. 3. 2024 14:59, Mgr. Alena Mokrá
Anotace
V originále
As computing system become more complex combining CPUs and GPUs, it is becoming harder and harder for programmers to keep their codes optimized as the hardware gets updated. Autotuners try to alleviate this by hiding as many architecture-based optimization details as possible from the end-user, so that the code can be used efficiently across different generations of systems. Several autotuning frameworks have emerged, but a comparative analysis between these related works is scarce, owing to the significant manual effort required to port a tunable kernel from one tuner another. In this article we introduce a new benchmark suite for evaluating the performance of optimization algorithms used by modern autotuners targeting GPUs. The suite contains tunable GPU kernels that are representative of real-world applications, allowing for comparisons between optimization algorithms and the examination of code optimization, search space difficulty, and performance portability. Our framework facilitates easy integration of new autotuners and benchmarks by defining a shared problem interface. Our benchmark suite is evaluated based on five characteristics: convergence rate, local minima centrality, optimal speedup, Permutation Feature Importance (PFI), and performance portability. The results show that optimization parameters greatly impact performance and the need for global optimization. The importance of each parameter is consistent across GPU architectures, however, the specific values need to be optimized for each architecture. Our portability study highlights the crucial importance of autotuning each application for a specific target architecture. The results reveal that simply transferring the optimal configuration from one architecture to another can result in a performance ranging from 58.5% to 99.9% of the optimal performance, depending on the GPU architecture. This highlights the importance of autotuning in modern computing systems and the value of our benchmark suite in facilitating the study of optimization algorithms and their effectiveness in achieving optimal performance for specific target architectures.
Návaznosti
LM2023054, projekt VaV |
|