2023
Classification of brain lesions using a machine learning approach with cross-sectional ADC value dynamics
SOLÁR, Peter, Hana VALEKOVÁ, Petr MARCON, Jan MIKULKA, Martin BARÁK et. al.Základní údaje
Originální název
Classification of brain lesions using a machine learning approach with cross-sectional ADC value dynamics
Autoři
SOLÁR, Peter (703 Slovensko, domácí), Hana VALEKOVÁ (703 Slovensko, domácí), Petr MARCON (203 Česká republika), Jan MIKULKA (203 Česká republika), Martin BARÁK (203 Česká republika, domácí), Michal HENDRYCH (203 Česká republika, domácí), Matyas STRANSKY (203 Česká republika), Katerina SIRUCKOVA (203 Česká republika), Martin KOSTIAL (203 Česká republika), Klára HOLÍKOVÁ (203 Česká republika, domácí), Jindrich BRYCHTA (203 Česká republika) a Radim JANČÁLEK (203 Česká republika, garant, domácí)
Vydání
Nature Scientific Reports, BERLIN, NATURE RESEARCH, 2023, 2045-2322
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30210 Clinical neurology
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 4.600 v roce 2022
Kód RIV
RIV/00216224:14110/23:00131736
Organizační jednotka
Lékařská fakulta
UT WoS
001055239000016
Klíčová slova anglicky
brain lesions; ADC; machine learning
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 15. 2. 2024 13:20, Mgr. Tereza Miškechová
Anotace
V originále
Diffusion-weighted imaging (DWI) and its numerical expression via apparent diffusion coefficient (ADC) values are commonly utilized in non-invasive assessment of various brain pathologies. Although numerous studies have confirmed that ADC values could be pathognomic for various ring-enhancing lesions (RELs), their true potential is yet to be exploited in full. The article was designed to introduce an image analysis method allowing REL recognition independently of either absolute ADC values or specifically defined regions of interest within the evaluated image. For this purpose, the line of interest (LOI) was marked on each ADC map to cross all of the RELs' compartments. Using a machine learning approach, we analyzed the LOI between two representatives of the RELs, namely, brain abscess and glioblastoma (GBM). The diagnostic ability of the selected parameters as predictors for the machine learning algorithms was assessed using two models, the k-NN model and the SVM model with a Gaussian kernel. With the k-NN machine learning method, 80% of the abscesses and 100% of the GBM were classified correctly at high accuracy. Similar results were obtained via the SVM method. The proposed assessment of the LOI offers a new approach for evaluating ADC maps obtained from different RELs and contributing to the standardization of the ADC map assessment.
Návaznosti
MUNI/A/1379/2022, interní kód MU |
|