J 2023

Classification of brain lesions using a machine learning approach with cross-sectional ADC value dynamics

SOLÁR, Peter, Hana VALEKOVÁ, Petr MARCON, Jan MIKULKA, Martin BARÁK et. al.

Základní údaje

Originální název

Classification of brain lesions using a machine learning approach with cross-sectional ADC value dynamics

Autoři

SOLÁR, Peter (703 Slovensko, domácí), Hana VALEKOVÁ (703 Slovensko, domácí), Petr MARCON (203 Česká republika), Jan MIKULKA (203 Česká republika), Martin BARÁK (203 Česká republika, domácí), Michal HENDRYCH (203 Česká republika, domácí), Matyas STRANSKY (203 Česká republika), Katerina SIRUCKOVA (203 Česká republika), Martin KOSTIAL (203 Česká republika), Klára HOLÍKOVÁ (203 Česká republika, domácí), Jindrich BRYCHTA (203 Česká republika) a Radim JANČÁLEK (203 Česká republika, garant, domácí)

Vydání

Nature Scientific Reports, BERLIN, NATURE RESEARCH, 2023, 2045-2322

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

30210 Clinical neurology

Stát vydavatele

Německo

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 4.600 v roce 2022

Kód RIV

RIV/00216224:14110/23:00131736

Organizační jednotka

Lékařská fakulta

UT WoS

001055239000016

Klíčová slova anglicky

brain lesions; ADC; machine learning

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 15. 2. 2024 13:20, Mgr. Tereza Miškechová

Anotace

V originále

Diffusion-weighted imaging (DWI) and its numerical expression via apparent diffusion coefficient (ADC) values are commonly utilized in non-invasive assessment of various brain pathologies. Although numerous studies have confirmed that ADC values could be pathognomic for various ring-enhancing lesions (RELs), their true potential is yet to be exploited in full. The article was designed to introduce an image analysis method allowing REL recognition independently of either absolute ADC values or specifically defined regions of interest within the evaluated image. For this purpose, the line of interest (LOI) was marked on each ADC map to cross all of the RELs' compartments. Using a machine learning approach, we analyzed the LOI between two representatives of the RELs, namely, brain abscess and glioblastoma (GBM). The diagnostic ability of the selected parameters as predictors for the machine learning algorithms was assessed using two models, the k-NN model and the SVM model with a Gaussian kernel. With the k-NN machine learning method, 80% of the abscesses and 100% of the GBM were classified correctly at high accuracy. Similar results were obtained via the SVM method. The proposed assessment of the LOI offers a new approach for evaluating ADC maps obtained from different RELs and contributing to the standardization of the ADC map assessment.

Návaznosti

MUNI/A/1379/2022, interní kód MU
Název: Organotypické kultury glioblastomu – personalizované testování protinádorové léčby II
Investor: Masarykova univerzita, Organotypické kultury glioblastomu – personalizované testování protinádorové léčby II