2023
Provenance of specimen and data – A prerequisite for AI development in computational pathology
PLASS, Markus, Rudolf WITTNER, Petr HOLUB, Francesca FREXIA, Cecilia MASCIA et. al.Základní údaje
Originální název
Provenance of specimen and data – A prerequisite for AI development in computational pathology
Autoři
PLASS, Markus, Rudolf WITTNER (703 Slovensko, domácí), Petr HOLUB (203 Česká republika, garant, domácí), Francesca FREXIA, Cecilia MASCIA, Matej GALLO (703 Slovensko, domácí), Heimo MÜLLER a Jörg GEIGER
Vydání
NEW BIOTECHNOLOGY, NETHERLANDS, ELSEVIER, 2023, 1871-6784
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 5.400 v roce 2022
Kód RIV
RIV/00216224:14610/23:00131767
Organizační jednotka
Ústav výpočetní techniky
UT WoS
001084774500001
Klíčová slova anglicky
Artificial intelligence; Provenance; Biological material; Traceability
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 8. 4. 2024 16:28, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
AI development in biotechnology relies on high-quality data to train and validate algorithms. The FAIR principles (Findable, Accessible, Interoperable, and Reusable) and regulatory frameworks such as the In Vitro Diagnostic Regulation (IVDR) and the Medical Device Regulation (MDR) specify requirements on specimen and data provenance to ensure the quality and traceability of data used in AI development. In this paper, a framework is presented for recording and publishing provenance information to meet these requirements. The framework is based on the use of standardized models and protocols, such as the W3C PROV model and the ISO 23494 series, to capture and record provenance information at various stages of the data generation and analysis process. The framework and use case illustrate the role of provenance information in supporting the development of high-quality AI algorithms in biotechnology. Finally, the principles of the framework are illustrated in a simple computational pathology use case, showing how specimen and data provenance can be used in the development and documentation of an AI algorithm. The use case demonstrates the importance of managing and integrating distributed provenance information and highlights the complex task of considering factors such as semantic interoperability, confidentiality, and the verification of authenticity and integrity.
Návaznosti
MUNI/A/1339/2022, interní kód MU |
|