2021
Biological applications of knowledge graph embedding models
MOHAMED, Sameh K, Ayah NOUNU a Vít NOVÁČEKZákladní údaje
Originální název
Biological applications of knowledge graph embedding models
Název česky
Biological applications of knowledge graph embedding models
Autoři
MOHAMED, Sameh K, Ayah NOUNU a Vít NOVÁČEK (203 Česká republika, garant, domácí)
Vydání
Briefings in Bioinformatics, Oxford (UK), Oxford University Press, 2021, 1467-5463
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 13.994
Organizační jednotka
Fakulta informatiky
UT WoS
000642298000084
Klíčová slova anglicky
biomedical knowledge graphs; knowledge graph embeddings; tensor factorization; link prediction; drug target interactions; polypharmacy side effects
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 8. 11. 2024 15:54, doc. Mgr. Bc. Vít Nováček, PhD
Anotace
V originále
Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs, are then processed using graph exploratory approaches to perform different types of analytical and predictive tasks. Despite the high predictive accuracy of these approaches, they have limited scalability due to their dependency on time-consuming path exploratory procedures. In recent years, owing to the rapid advances of computational technologies, new approaches for modelling graphs and mining them with high accuracy and scalability have emerged. These approaches, i.e. knowledge graph embedding (KGE) models, operate by learning low-rank vector representations of graph nodes and edges that preserve the graph’s inherent structure. These approaches were used to analyse knowledge graphs from different domains where they showed superior performance and accuracy compared to previous graph exploratory approaches. In this work, we study this class of models in the context of biological knowledge graphs and their different applications. We then show how KGE models can be a natural fit for representing complex biological knowledge modelled as graphs. We also discuss their predictive and analytical capabilities in different biology applications. In this regard, we present two example case studies that demonstrate the capabilities of KGE models: prediction of drug–target interactions and polypharmacy side effects. Finally, we analyse different practical considerations for KGEs, and we discuss possible opportunities and challenges related to adopting them for modelling biological systems.