J 2023

Growth, physiology, and stomatal parameters of plant polyploids grown under ice age, present-day, and future CO2 concentrations

ŠMARDA, Petr, Karel KLEM, Ondřej KNÁPEK, Barbora VESELA, Kristýna VESELÁ et. al.

Basic information

Original name

Growth, physiology, and stomatal parameters of plant polyploids grown under ice age, present-day, and future CO2 concentrations

Authors

ŠMARDA, Petr (203 Czech Republic, guarantor, belonging to the institution), Karel KLEM, Ondřej KNÁPEK (203 Czech Republic, belonging to the institution), Barbora VESELA, Kristýna VESELÁ (203 Czech Republic, belonging to the institution), Petr HOLUB, Vít KUCHAŘ (203 Czech Republic, belonging to the institution), Alexandra ŠILEROVÁ (203 Czech Republic, belonging to the institution), Lucie HOROVÁ (203 Czech Republic, belonging to the institution) and Petr BUREŠ (203 Czech Republic, belonging to the institution)

Edition

New Phytologist, HOBOKEN, Blackwell Science, 2023, 0028-646X

Other information

Language

English

Type of outcome

Článek v odborném periodiku

Field of Study

10611 Plant sciences, botany

Country of publisher

United States of America

Confidentiality degree

není předmětem státního či obchodního tajemství

References:

Impact factor

Impact factor: 9.400 in 2022

RIV identification code

RIV/00216224:14310/23:00134269

Organization unit

Faculty of Science

UT WoS

000986188200001

Keywords in English

atmospheric carbon dioxide; cell size; climate change; genome size; glacial periods; photosynthesis; polyploidy; stomatal conductance

Tags

Tags

International impact, Reviewed
Změněno: 6/1/2024 00:19, prof. RNDr. Petr Bureš, Ph.D.

Abstract

V originále

center dot Polyploidy plays an important role in plant evolution, but knowledge of its ecophysiological consequences, such as of the putatively enlarged stomata of polyploid plants, remains limited. Enlarged stomata should disadvantage polyploids at low CO2 concentrations (namely during the Quaternary glacial periods) because larger stomata are viewed as less effective at CO2 uptake. center dot We observed the growth, physiology, and epidermal cell features of 15 diploids and their polyploid relatives cultivated under glacial, present-day, and potential future atmospheric CO2 concentrations (200, 400, and 800 ppm respectively). center dot We demonstrated some well-known polyploidy effects, such as faster growth and larger leaves, seeds, stomata, and other epidermal cells. The stomata of polyploids, however, tended to be more elongated than those of diploids, and contrary to common belief, they had no negative effect on the CO2 uptake capacity of polyploids. Moreover, polyploids grew comparatively better than diploids even at low, glacial CO2 concentrations. Higher polyploids with large genomes also showed increased operational stomatal conductance and consequently, a lower water-use efficiency. center dot Our results point to a possible decrease in growth superiority of polyploids over diploids in a current and future high CO2 climactic scenarios, as well as the possible water and/or nutrient dependency of higher polyploids.

Links

GA19-18545S, research and development project
Name: Eko-geografická limitace rostlinných polyploidů: experimentální testování nových hypotéz souvisejících s velikostí buněk
Investor: Czech Science Foundation