2023
Utilization of temporal autoencoder for semi-supervised intracranial EEG clustering and classification
NEJEDLÝ, Petr, Vaclav KREMEN, Kamila LEPKOVA, Filip MIVALT, Vladimir SLADKY et. al.Základní údaje
Originální název
Utilization of temporal autoencoder for semi-supervised intracranial EEG clustering and classification
Autoři
NEJEDLÝ, Petr (203 Česká republika, garant, domácí), Vaclav KREMEN (203 Česká republika), Kamila LEPKOVA (203 Česká republika), Filip MIVALT (203 Česká republika), Vladimir SLADKY (203 Česká republika), Tereza PRIDALOVA (203 Česká republika), Filip PLESINGER (203 Česká republika), Pavel JURAK (203 Česká republika), Martin PAIL (203 Česká republika, domácí), Milan BRÁZDIL (203 Česká republika, domácí), Petr KLIMES (203 Česká republika) a Gregory WORRELL
Vydání
Nature Scientific Reports, BERLIN, NATURE, 2023, 2045-2322
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30210 Clinical neurology
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 4.600 v roce 2022
Kód RIV
RIV/00216224:14110/23:00134673
Organizační jednotka
Lékařská fakulta
UT WoS
000968670400005
Klíčová slova anglicky
temporal autoencoder; EEG
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 15. 11. 2023 14:49, Mgr. Tereza Miškechová
Anotace
V originále
Manual visual review, annotation and categorization of electroencephalography (EEG) is a time-consuming task that is often associated with human bias and requires trained electrophysiology experts with specific domain knowledge. This challenge is now compounded by development of measurement technologies and devices allowing large-scale heterogeneous, multi-channel recordings spanning multiple brain regions over days, weeks. Currently, supervised deep-learning techniques were shown to be an effective tool for analyzing big data sets, including EEG. However, the most significant caveat in training the supervised deep-learning models in a clinical research setting is the lack of adequate gold-standard annotations created by electrophysiology experts. Here, we propose a semi-supervised machine learning technique that utilizes deep-learning methods with a minimal amount of gold-standard labels. The method utilizes a temporal autoencoder for dimensionality reduction and a small number of the expert-provided gold-standard labels used for kernel density estimating (KDE) maps. We used data from electrophysiological intracranial EEG (iEEG) recordings acquired in two hospitals with different recording systems across 39 patients to validate the method. The method achieved iEEG classification (Pathologic vs. Normal vs. Artifacts) results with an area under the receiver operating characteristic (AUROC) scores of 0.862 +/- 0.037, 0.879 +/- 0.042, and area under the precision-recall curve (AUPRC) scores of 0.740 +/- 0.740, 0.714 +/- 0.042. This demonstrates that semi-supervised methods can provide acceptable results while requiring only 100 gold-standard data samples in each classification category. Subsequently, we deployed the technique to 12 novel patients in a pseudo-prospective framework for detecting Interictal epileptiform discharges (IEDs). We show that the proposed temporal autoencoder was able to generalize to novel patients while achieving AUROC of 0.877 +/- 0.067 and AUPRC of 0.705 +/- 0.154.
Návaznosti
NV19-04-00343, projekt VaV |
|