VRÁBEL, Jakub, Erik KÉPEŠ, Pavel NEDĚLNÍK, Jakub BUDAY, Jan CEMPÍREK, Pavel POŘÍZKA a Jozef KAISER. Spectral library transfer between distinct laser-induced breakdown spectroscopy systems trained on simultaneous measurements. Journal of Analytical Atomic Spectrometry. Royal Society of Chemistry, 2023, roč. 38, č. 4, s. 841-853. ISSN 0267-9477. Dostupné z: https://dx.doi.org/10.1039/d2ja00406b.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Spectral library transfer between distinct laser-induced breakdown spectroscopy systems trained on simultaneous measurements
Autoři VRÁBEL, Jakub, Erik KÉPEŠ, Pavel NEDĚLNÍK, Jakub BUDAY, Jan CEMPÍREK (203 Česká republika, domácí), Pavel POŘÍZKA a Jozef KAISER.
Vydání Journal of Analytical Atomic Spectrometry, Royal Society of Chemistry, 2023, 0267-9477.
Další údaje
Originální jazyk angličtina
Typ výsledku Článek v odborném periodiku
Obor 10505 Geology
Stát vydavatele Velká Británie a Severní Irsko
Utajení není předmětem státního či obchodního tajemství
WWW URL
Impakt faktor Impact factor: 3.400 v roce 2022
Kód RIV RIV/00216224:14310/23:00132292
Organizační jednotka Přírodovědecká fakulta
Doi http://dx.doi.org/10.1039/d2ja00406b
UT WoS 000940533400001
Klíčová slova anglicky spectroscopic data; library transfer; machine learning; artificial neural networks; autoencoder
Štítky rivok
Příznaky Mezinárodní význam, Recenzováno
Změnil Změnila: Mgr. Marie Šípková, DiS., učo 437722. Změněno: 16. 11. 2023 10:02.
Anotace
The mutual incompatibility of distinct spectroscopic systems is among the most limiting factors in laser-induced breakdown spectroscopy (LIBS). The cost related to setting up a new LIBS system is increased, as its extensive calibration is required. Solving this problem would enable inter-laboratory reference measurements and shared spectral libraries, which are fundamental for other spectroscopic techniques. We study a simplified version of this challenge where LIBS systems differ only in the spectrometers used and collection optics but share all other parts of the apparatus and collect spectra simultaneously from the same plasma plume. Extensive datasets measured as hyperspectral images of a heterogeneous rock sample are used to train machine learning models that can transfer spectra between systems. The transfer is realized using a composed model that consists of a variational autoencoder (VAE) and a multilayer perceptron (MLP). The VAE is used to create a latent representation of spectra from a primary system. Subsequently, spectra from a secondary system are mapped to corresponding locations in the latent space by the MLP. The transfer is evaluated using several figures of merit (Euclidean and cosine distances, both spatially resolved; k-means clustering of transferred spectra). We demonstrate the viability of the method and compare it to several baseline approaches of varying complexities.
VytisknoutZobrazeno: 1. 5. 2024 22:35