2023
Spectral library transfer between distinct laser-induced breakdown spectroscopy systems trained on simultaneous measurements
VRÁBEL, Jakub, Erik KÉPEŠ, Pavel NEDĚLNÍK, Jakub BUDAY, Jan CEMPÍREK et. al.Základní údaje
Originální název
Spectral library transfer between distinct laser-induced breakdown spectroscopy systems trained on simultaneous measurements
Autoři
VRÁBEL, Jakub, Erik KÉPEŠ, Pavel NEDĚLNÍK, Jakub BUDAY, Jan CEMPÍREK (203 Česká republika, domácí), Pavel POŘÍZKA a Jozef KAISER
Vydání
Journal of Analytical Atomic Spectrometry, Royal Society of Chemistry, 2023, 0267-9477
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10505 Geology
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.400 v roce 2022
Kód RIV
RIV/00216224:14310/23:00132292
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000940533400001
Klíčová slova anglicky
spectroscopic data; library transfer; machine learning; artificial neural networks; autoencoder
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 16. 11. 2023 10:02, Mgr. Marie Šípková, DiS.
Anotace
V originále
The mutual incompatibility of distinct spectroscopic systems is among the most limiting factors in laser-induced breakdown spectroscopy (LIBS). The cost related to setting up a new LIBS system is increased, as its extensive calibration is required. Solving this problem would enable inter-laboratory reference measurements and shared spectral libraries, which are fundamental for other spectroscopic techniques. We study a simplified version of this challenge where LIBS systems differ only in the spectrometers used and collection optics but share all other parts of the apparatus and collect spectra simultaneously from the same plasma plume. Extensive datasets measured as hyperspectral images of a heterogeneous rock sample are used to train machine learning models that can transfer spectra between systems. The transfer is realized using a composed model that consists of a variational autoencoder (VAE) and a multilayer perceptron (MLP). The VAE is used to create a latent representation of spectra from a primary system. Subsequently, spectra from a secondary system are mapped to corresponding locations in the latent space by the MLP. The transfer is evaluated using several figures of merit (Euclidean and cosine distances, both spatially resolved; k-means clustering of transferred spectra). We demonstrate the viability of the method and compare it to several baseline approaches of varying complexities.