2023
Public (Health) Sector and Academia
ANTOL, Matej, Michal RŮŽIČKA, Luděk MATYSKA a Jiří MAREKZákladní údaje
Originální název
Public (Health) Sector and Academia
Název anglicky
Public (Health) Sector and Academia
Autoři
ANTOL, Matej (703 Slovensko, garant, domácí), Michal RŮŽIČKA (203 Česká republika, domácí), Luděk MATYSKA (203 Česká republika, domácí) a Jiří MAREK (203 Česká republika, domácí)
Vydání
First edition. Brno, Data-Driven Decision-Making in Medical Education and Healthcare, od s. 51-66, 16 s. Data Rulezzzz! 2023
Nakladatel
Masaryk University
Další údaje
Jazyk
čeština
Typ výsledku
Kapitola resp. kapitoly v odborné knize
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Odkazy
Kód RIV
RIV/00216224:14610/23:00132315
Organizační jednotka
Ústav výpočetní techniky
ISBN
978-80-280-0392-0
Klíčová slova anglicky
Open Science; EOSC; Data Management; DMP
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 20. 11. 2023 14:58, RNDr. Michal Růžička, Ph.D.
V originále
This book is divided into three main sections: 1. The big picture (general background and methodologies) 2. Medical and healthcare education in selected case studies 3. Health information and statistics in selected case studies Each chapter, except the big picture, has the same format describing a particular project result as a case study, which is always based on a well-proven interdisciplinary methodology (specifically CRISP-DM – Cross-Industry Process for Data Mining – the structured approach to planning and running data mining projects. – As a methodology, it includes descriptions of individual project phases, the tasks involved with each stage, and the relationships between them. – As a process model, it provides an overview of the complete data mining life cycle.
Anglicky
This book is divided into three main sections: 1. The big picture (general background and methodologies) 2. Medical and healthcare education in selected case studies 3. Health information and statistics in selected case studies Each chapter, except the big picture, has the same format describing a particular project result as a case study, which is always based on a well-proven interdisciplinary methodology (specifically CRISP-DM – Cross-Industry Process for Data Mining – the structured approach to planning and running data mining projects. – As a methodology, it includes descriptions of individual project phases, the tasks involved with each stage, and the relationships between them. – As a process model, it provides an overview of the complete data mining life cycle.