2023
Bundles of Weyl structures and invariant calculus for parabolic geometries
ČAP, Andreas a Jan SLOVÁKZákladní údaje
Originální název
Bundles of Weyl structures and invariant calculus for parabolic geometries
Autoři
ČAP, Andreas (40 Rakousko) a Jan SLOVÁK (203 Česká republika, domácí)
Vydání
Rhode Island (USA), The Diverse World of PDEs : Geometry and Mathematical Physics, od s. 53-72, 20 s. 2023
Nakladatel
American Mathematical Society
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10101 Pure mathematics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Odkazy
Kód RIV
RIV/00216224:14310/23:00134301
Organizační jednotka
Přírodovědecká fakulta
ISBN
978-1-4704-7147-7
ISSN
Klíčová slova anglicky
Cartan geometry; parabolic geometry; Weyl structures; connections; symmetry; differential operator
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 5. 4. 2024 14:54, Mgr. Marie Šípková, DiS.
Anotace
V originále
For more than hundred years, various concepts were developed to understand the fields of geometric objects and invariant differential operators between them for conformal Riemannian and projective geometries. More recently, several general tools were presented for the entire class of parabolic geometries, i.e., the Cartan geometries modelled on homogeneous spaces $G/P$ with $P$ a parabolic subgroup in a semi-simple Lie group $G$. Similarly to conformal Riemannian and projective structures, all these geometries determine a class of distinguished affine connections, which carry an affine structure modelled on differential 1-forms $\Upsilon$. They correspond to reductions of $P$ to its reductive Levi factor, and they are called the Weyl structures similarly to the conformal case. The standard definition of differential invariants in this setting is as affine invariants of these connections, which do not depend on the choice within the class. In this article, we describe a universal calculus which provides an important first step to determine such invariants. We present a natural procedure how to construct all affine invariants of Weyl connections, which depend only tensorially on the deformations $\Upsilon$.
Návaznosti
GX19-28628X, projekt VaV |
|