J 2023

Analyzing game statistics and career trajectories of female elite junior tennis players: A machine learning approach

BOZDĚCH, Michal a Jiří ZHÁNĚL

Základní údaje

Originální název

Analyzing game statistics and career trajectories of female elite junior tennis players: A machine learning approach

Autoři

BOZDĚCH, Michal (203 Česká republika, garant, domácí) a Jiří ZHÁNĚL (203 Česká republika, domácí)

Vydání

PLOS ONE, UNITED STATES, PUBLIC LIBRARY SCIENCE, 2023, 1932-6203

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

30306 Sport and fitness sciences

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 3.700 v roce 2022

Kód RIV

RIV/00216224:14510/23:00132389

Organizační jednotka

Fakulta sportovních studií

UT WoS

001139775100164

Klíčová slova anglicky

Artificial Intelligence; WJTF; WTA; Rank

Štítky

Změněno: 25. 3. 2024 06:46, Mgr. Pavlína Roučová, DiS.

Anotace

V originále

Tennis is a popular and complex sport influenced by various factors. Early training increases the risk of career dropout before peak performance. This study analyzed game statistics of World Junior Tennis Final participants (2012–2016), their career paths and it examined how game statistics impact rankings of top 300 female players, aiming to develop an accurate model using percentage-based variables. Descriptive and inferential statistics, including neural networks, were employed. Four machine learning models with categorical predictors and one response were created. Seven models with up to 18 variables and one ordinal (WTA rank) were also developed. Tournament rankings could be predicted using categorical data, but not subsequent professional rankings. Although effects on rankings among top 300 female players were identified, a reliable predictive model using only percentage-based data was not achieved. AI models provided insights into rankings and performance indicators, revealing a lower dropout rate than reported. Participation in elite junior tournaments is crucial for career development and designing training plans in tennis. Further research should explore game statistics, dropout rates, additional variables, and fine-tuning of AI models to improve predictions and understanding of the sport.

Návaznosti

MUNI/A/1637/2020, interní kód MU
Název: Lateralita v kontextu diagnostiky vybraných faktorů sportovního výkonu v tenisu a prevence zranění
Investor: Masarykova univerzita, Lateralita v kontextu diagnostiky vybraných faktorů sportovního výkonu v tenisu a prevence zranění