J 2023

A Roadmap for Universal Syllabic Segmentation

SOJKA, Ondřej, Petr SOJKA a Jakub MÁCA

Základní údaje

Originální název

A Roadmap for Universal Syllabic Segmentation

Název anglicky

A Roadmap for Universal Syllabic Segmentation

Autoři

SOJKA, Ondřej (203 Česká republika, garant, domácí), Petr SOJKA (203 Česká republika, domácí) a Jakub MÁCA (203 Česká republika, domácí)

Vydání

Zpravodaj CSTUG, Brno, CSTUG, 2023, 1211-6661

Další údaje

Jazyk

čeština

Typ výsledku

Článek v odborném periodiku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Česká republika

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Kód RIV

RIV/00216224:14330/23:00132504

Organizační jednotka

Fakulta informatiky

Klíčová slova česky

slabičnost; slabika; dělení slov; příprava univerzálních vzorů

Klíčová slova anglicky

syllabification; hyphenation; universal syllabic patterns preparation

Příznaky

Recenzováno
Změněno: 12. 12. 2023 17:56, doc. RNDr. Petr Sojka, Ph.D.

Anotace

V originále

Space- and time-effective segmentation (word hyphenation) of natural languages remains at the core of every document rendering system, be it TeX, web browser, or mobile operating system. In most languages, segmentation mimicking syllabic pronunciation is a pragmatic preference today.

As language switching is often not marked in rendered texts, the typesetting engine needs universal syllabic segmentation. In this article, we show the feasibility of this idea by offering a prototype solution to two main problems:
A) Using Patgen to generate patterns for several languages at once; and
B) lack of Unicode support in tools like Patgen or TeX (patterns in UTF-16 encoding) is missing.

For A), we have applied it to generating universal syllabic patterns from wordlists of nine syllabic, as opposed to etymology-based, languages (namely, Czech, Slovak, Georgian, Greek, Polish, Russian, Turkish, Turkmen, and Ukrainian).
For B), we have created a version of Patgen that uses the Judy array data structure and compared its effectiveness with the trie implementation.

With the data from these nine languages, we show that:
A) developing universal, up-to-date, high-coverage, and highly generalized universal syllabic segmentation patterns is possible, with a high impact on virtually all typesetting engines, including web page renderers; and
B) bringing wide character support into the hyphenation part of the TeX suite of programs is possible by using Judy arrays.

Anglicky

Space- and time-effective segmentation (word hyphenation) of natural languages remains at the core of every document rendering system, be it TeX, web browser, or mobile operating system. In most languages, segmentation mimicking syllabic pronunciation is a pragmatic preference today.

As language switching is often not marked in rendered texts, the typesetting engine needs universal syllabic segmentation. In this article, we show the feasibility of this idea by offering a prototype solution to two main problems:
A) Using Patgen to generate patterns for several languages at once; and
B) lack of Unicode support in tools like Patgen or TeX (patterns in UTF-16 encoding) is missing.

For A), we have applied it to generating universal syllabic patterns from wordlists of nine syllabic, as opposed to etymology-based, languages (namely, Czech, Slovak, Georgian, Greek, Polish, Russian, Turkish, Turkmen, and Ukrainian).
For B), we have created a version of Patgen that uses the Judy array data structure and compared its effectiveness with the trie implementation.

With the data from these nine languages, we show that:
A) developing universal, up-to-date, high-coverage, and highly generalized universal syllabic segmentation patterns is possible, with a high impact on virtually all typesetting engines, including web page renderers; and
B) bringing wide character support into the hyphenation part of the TeX suite of programs is possible by using Judy arrays.


Návaznosti

MUNI/A/1339/2022, interní kód MU
Název: Rozvoj technik pro zpracování dat pro podporu vyhledávání, analýz a vizualizací rozsáhlých datových souborů s využitím umělé inteligence
Investor: Masarykova univerzita, Rozvoj technik pro zpracování dat pro podporu vyhledávání, analýz a vizualizací rozsáhlých datových souborů s využitím umělé inteligence