J 2023

Microfluidic device for enhancement and analysis of osteoblast differentiation in three-dimensional cell cultures

KILLINGER, Michael, Adéla KRATOCHVILOVÁ, Eva INGEBORG REIHS, Eva MATALOVÁ, Karel KLEPÁRNÍK et. al.

Základní údaje

Originální název

Microfluidic device for enhancement and analysis of osteoblast differentiation in three-dimensional cell cultures

Autoři

KILLINGER, Michael (203 Česká republika, domácí), Adéla KRATOCHVILOVÁ, Eva INGEBORG REIHS, Eva MATALOVÁ, Karel KLEPÁRNÍK a Mario ROTHBAUER (garant)

Vydání

Journal of Biological Engineering, BMC, 2023, 1754-1611

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10406 Analytical chemistry

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 5.600 v roce 2022

Kód RIV

RIV/00216224:14310/23:00132710

Organizační jednotka

Přírodovědecká fakulta

UT WoS

001126792800001

Klíčová slova anglicky

Bone-on-a-chip; 3D cell cultures; Dynamic cultivation; Microfluidics; Microwells micropillars

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 2. 1. 2024 12:36, Mgr. Marie Šípková, DiS.

Anotace

V originále

Three-dimensional (3D) cell cultures are to date the gold standard in biomedical research fields due to their enhanced biological functions compared to conventional two-dimensional (2D) cultures. 3D cell spheroids, as well as organoids, are better suited to replicate tissue functions, which enables their use both as in vitro models for basic research and toxicology, as well as building blocks used in tissue/organ biofabrication approaches. Culturing 3D spheroids from bone-derived cells is an emerging technology for both disease modelling and drug screening applications. Bone tissue models are mainly limited by the implementation of sophisticated devices and procedures that can foster a tissue-specific 3D cell microenvironment along with a dynamic cultivation regime. In this study, we consequently developed, optimized and characterized an advanced perfused microfluidic platform to improve the reliability of 3D bone cell cultivation and to enhance aspects of bone tissue maturation in vitro. Moreover, biomechanical stimulation generated by fluid flow inside the arrayed chamber, was used to mimic a more dynamic cell environment emulating a highly vascularized bone we expected to improve the osteogenic 3D microenvironment in the developed multifunctional spheroid-array platform. The optimized 3D cell culture protocols in our murine bone-on-a-chip spheroid model exhibited increased mineralization and viability compared to static conditions. As a proof-of-concept, we successfully confirmed on the beneficial effects of a dynamic culture environment on osteogenesis and used our platform for analysis of bone-derived spheroids produced from primary human pre-osteoblasts. To conclude, the newly developed system represents a powerful tool for studying human bone patho/physiology in vitro under more relevant and dynamic culture conditions converging the advantages of microfluidic platforms with multi-spheroid array technologies.