2023
Multivariate linear mixture models for the prediction of febrile seizure risk and recurrence: a prospective case-control study
PAPEŽ, Jan, Rene LABOUNEK, Petr JABANDŽIEV, Katarína ČESKÁ, Kateřina SLABÁ et. al.Základní údaje
Originální název
Multivariate linear mixture models for the prediction of febrile seizure risk and recurrence: a prospective case-control study
Autoři
PAPEŽ, Jan (203 Česká republika, domácí), Rene LABOUNEK, Petr JABANDŽIEV (203 Česká republika, domácí), Katarína ČESKÁ (703 Slovensko, domácí), Kateřina SLABÁ (203 Česká republika, domácí), Hana OŠLEJŠKOVÁ (203 Česká republika, domácí), Štefánia AULICKÁ (703 Slovensko, domácí) a Igor NESTRASIL (garant)
Vydání
Nature Scientific Reports, BERLIN, NATURE PORTFOLIO, 2023, 2045-2322
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30210 Clinical neurology
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 4.600 v roce 2022
Kód RIV
RIV/00216224:14110/23:00134687
Organizační jednotka
Lékařská fakulta
UT WoS
001086926800024
Klíčová slova anglicky
Multivariate linear mixture models; febrile seizure
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 7. 3. 2024 08:53, Mgr. Eva Dubská
Anotace
V originále
Our goal was to identify highly accurate empirical models for the prediction of the risk of febrile seizure (FS) and FS recurrence. In a prospective, three-arm, case-control study, we enrolled 162 children (age 25.8 +/- 17.1 months old, 71 females). Participants formed one case group (patients with FS) and two control groups (febrile patients without seizures and healthy controls). The impact of blood iron status, peak body temperature, and participants' demographics on FS risk and recurrence was investigated with univariate and multivariate statistics. Serum iron concentration, iron saturation, and unsaturated iron-binding capacity differed between the three investigated groups (pFWE < 0.05). These serum analytes were key variables in the design of novel multivariate linear mixture models. The models classified FS risk with higher accuracy than univariate approaches. The designed bi-linear classifier achieved a sensitivity/specificity of 82%/89% and was closest to the gold-standard classifier. A multivariate model assessing FS recurrence provided a difference (p(FWE) < 0.05) with a separating sensitivity/specificity of 72%/69%. Iron deficiency, height percentile, and age were significant FS risk factors. In addition, height percentile and hemoglobin concentration were linked to FS recurrence. Novel multivariate models utilizing blood iron status and demographic variables predicted FS risk and recurrence among infants and young children with fever.
Návaznosti
NU21-04-00305, projekt VaV |
|