2023
Benchmark for Automatic Clear-Cut Morphology Detection Methods Derived from Airborne Lidar Data
MELICHOVA, Zlatica, Stanislav PEKÁR a Peter SUROVYZákladní údaje
Originální název
Benchmark for Automatic Clear-Cut Morphology Detection Methods Derived from Airborne Lidar Data
Autoři
MELICHOVA, Zlatica (garant), Stanislav PEKÁR (703 Slovensko, domácí) a Peter SUROVY
Vydání
Forests, MDPI, 2023, 1999-4907
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
40102 Forestry
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.900 v roce 2022
Kód RIV
RIV/00216224:14310/23:00133014
Organizační jednotka
Přírodovědecká fakulta
UT WoS
001131325900001
Klíčová slova anglicky
multitemporal laser scanning data; harvest detection; simplification polygons; clear-cut areas
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 8. 3. 2024 15:12, Mgr. Marie Šípková, DiS.
Anotace
V originále
Forest harvest detection techniques have recently gained increased attention due to the varied results they provide. Correctly determining the acreage of clear-cut areas is crucial for carbon sequestration. Detecting clear-cut areas using airborne laser scanning (ALS) could be an accurate method for determining the extent of clear-cut areas and their subsequent map display in forest management plans. The shapes of ALS-detected clear-cut areas have uneven edges with protrusions that might not be readable when displayed correctly. Therefore, it is necessary to simplify these shapes for better comprehension. To simplify the shapes of ALS-scanned clear-cut areas, we tested four simplification algorithms using ArcGIS Pro 3.0.0 software: the retain critical points (Douglas-Peucker), retain critical bends (Wang-Muller), retain weighted effective areas (Zhou-Jones), and retain effective areas (Visvalingam-Whyatt) algorithms. Ground-truth data were obtained from clear-cut areas plotted in the forest management plan. Results showed that the Wang-Muller algorithm was the best of the four ALS algorithms at simplifying the shapes of detected clear-cut areas. Using the simplification algorithm reduced the time required to edit polygons to less than 1% of the time required for manual delineation.