2023
Unsupervised extraction, classification and visualization of clinical note segments using the MIMIC-III dataset
ZELINA, Petr, Jana HALÁMKOVÁ a Vít NOVÁČEKZákladní údaje
Originální název
Unsupervised extraction, classification and visualization of clinical note segments using the MIMIC-III dataset
Autoři
ZELINA, Petr (203 Česká republika, domácí), Jana HALÁMKOVÁ (203 Česká republika) a Vít NOVÁČEK (203 Česká republika, domácí)
Vydání
Istanbul, Proceedings of IEEE International Conference on Bioinformatics and Biomedicine (BIBM), od s. 4172-4178, 7 s. 2023
Nakladatel
IEEE
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Kód RIV
RIV/00216224:14330/23:00133337
Organizační jednotka
Fakulta informatiky
ISBN
979-8-3503-3748-8
ISSN
Klíčová slova anglicky
NLP; EHR; Clinical Notes; Information Extraction; Text Classification
Změněno: 8. 4. 2024 22:05, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
This paper presents a text-mining approach to extracting and organizing segments from unstructured clinical notes in an unsupervised way. Our work is motivated by the real challenge of poor semantic integration between clinical notes produced by different doctors, departments, or hospitals. This can lead to clinicians overlooking important information, especially for patients with long and varied medical histories. This work extends a previous approach developed for Czech breast cancer patients and validates it on the publicly accessible MIMIC-III English dataset, demonstrating its universal and language-independent applicability. Our work is a stepping stone to a broad array of downstream tasks, such as summarizing or integrating patient records, extracting structured information, or computing patient embeddings. Additionally, the paper presents a clustering analysis of the latent space of note segment types, using hierarchical clustering and an interactive treemap visualization. The presented results demonstrate that this approach generalizes well for MIMIC and English.
Návaznosti
MUNI/G/1763/2020, interní kód MU |
|