2022
Prodromal Diagnosis of Lewy Body Diseases Based on Actigraphy
MIKULEC, Marek, Zoltan GALAZ, Jiri MEKYSKA, Jan MUCHA, Luboš BRABENEC et. al.Základní údaje
Originální název
Prodromal Diagnosis of Lewy Body Diseases Based on Actigraphy
Autoři
MIKULEC, Marek, Zoltan GALAZ, Jiri MEKYSKA, Jan MUCHA, Luboš BRABENEC (203 Česká republika, domácí), Ivona MORÁVKOVÁ (703 Slovensko, domácí) a Irena REKTOROVÁ (203 Česká republika, garant, domácí)
Vydání
NEW YORK, 2022 45th International Conference on Telecommunications and Signal Processing (TSP), od s. 403-406, 4 s. 2022
Nakladatel
IEEE
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/00216224:14740/22:00134704
Organizační jednotka
Středoevropský technologický institut
ISBN
978-1-6654-6948-7
UT WoS
001070846300082
Klíčová slova anglicky
actigraphy; machine learning; neurodegenerative diseases; Lewy body diseases; RBD; SHAP values; sleep diary; XGBoost
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 5. 4. 2024 10:57, Mgr. Eva Dubská
Anotace
V originále
This paper is devoted to the computerized automated diagnosis of the prodromal state of Lewy body diseases (LBD) based on actigraphy. LBD is a group of neurodegenerative diseases that require early treatment to alleviate the course of the disease and improve the quality of the lives of patients. This work proposes a method of prodromal diagnosis of LBD based on quantitative analysis of actigraphic sleep data. A new method of sleep and wake detection based on the XGBoost classifier and the angle of the z-axis is introduced, which achieves 83 % accuracy and surpasses the results of state-of-the-art methods. Furthermore, a method that can distinguish subjects with pro-dromal LBD (50 subjects with Parkinson's disease, dementia with Lewy bodies or mild cognitive impairment) and healthy controls (63 subjects) with 94 % accuracy was introduced. The sensitivity of the method of 100 % and specificity of 91% was considered sufficient for clinical practice and the proposed methods can help develop decision-making tools that maximize the potential for an early and objective diagnosis of LBD.
Návaznosti
NU20-04-00294, projekt VaV |
|