2024
CAvity DEtection Tool (CADET): pipeline for detection of X-ray cavities in hot galactic and cluster atmospheres
PLŠEK, Tomáš, Norbert WERNER, Martin TOPINKA a Aurora SIMIONESCUZákladní údaje
Originální název
CAvity DEtection Tool (CADET): pipeline for detection of X-ray cavities in hot galactic and cluster atmospheres
Autoři
PLŠEK, Tomáš (203 Česká republika, domácí), Norbert WERNER (703 Slovensko, domácí), Martin TOPINKA (203 Česká republika, domácí) a Aurora SIMIONESCU
Vydání
Monthly Notices of the Royal Astronomical Society, Oxford University Press, 2024, 0035-8711
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 4.800 v roce 2022
Organizační jednotka
Přírodovědecká fakulta
UT WoS
001112824700014
Klíčová slova anglicky
methods: data analysis; techniques: image processing; galaxies: active; galaxies: haloes; X-rays: galaxies
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 5. 4. 2024 10:37, Mgr. Marie Novosadová Šípková, DiS.
Anotace
V originále
The study of jet-inflated X-ray cavities provides a powerful insight into the energetics of hot galactic atmospheres and radio-mechanical AGN feedback. By estimating the volumes of X-ray cavities, the total energy and thus also the corresponding mechanical jet power required for their inflation can be derived. Properly estimating their total extent is, however, non-trivial, prone to biases, nearly impossible for poor-quality data, and so far has been done manually by scientists. We present a novel machine-learning pipeline called Cavity Detection Tool (CADET), developed as an assistive tool that detects and estimates the sizes of X-ray cavities from raw Chandra images. The pipeline consists of a convolutional neural network trained for producing pixel-wise cavity predictions and a DBSCAN clustering algorithm, which decomposes the predictions into individual cavities. The convolutional network was trained using mock observations of early-type galaxies simulated to resemble real noisy Chandra-like images. The network's performance has been tested on simulated data obtaining an average cavity volume error of 14percent at an 89percent true-positive rate. For simulated images without any X-ray cavities inserted, we obtain a 5percent false-positive rate. When applied to real Chandra images, the pipeline recovered 93 out of 97 previously known X-ray cavities in nearby early-type galaxies and all 14 cavities in chosen galaxy clusters. Besides that, the CADET pipeline discovered seven new cavity pairs in atmospheres of early-type galaxies (IC4765, NGC533, NGC2300, NGC3091, NGC4073, NGC4125, and NGC5129) and a number of potential cavity candidates.
Návaznosti
GX21-13491X, projekt VaV |
|