J 2024

CAvity DEtection Tool (CADET): pipeline for detection of X-ray cavities in hot galactic and cluster atmospheres

PLŠEK, Tomáš, Norbert WERNER, Martin TOPINKA a Aurora SIMIONESCU

Základní údaje

Originální název

CAvity DEtection Tool (CADET): pipeline for detection of X-ray cavities in hot galactic and cluster atmospheres

Autoři

PLŠEK, Tomáš (203 Česká republika, domácí), Norbert WERNER (703 Slovensko, domácí), Martin TOPINKA (203 Česká republika, domácí) a Aurora SIMIONESCU

Vydání

Monthly Notices of the Royal Astronomical Society, Oxford University Press, 2024, 0035-8711

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10308 Astronomy

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 4.800 v roce 2022

Organizační jednotka

Přírodovědecká fakulta

UT WoS

001112824700014

Klíčová slova anglicky

methods: data analysis; techniques: image processing; galaxies: active; galaxies: haloes; X-rays: galaxies

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 5. 4. 2024 10:37, Mgr. Marie Šípková, DiS.

Anotace

V originále

The study of jet-inflated X-ray cavities provides a powerful insight into the energetics of hot galactic atmospheres and radio-mechanical AGN feedback. By estimating the volumes of X-ray cavities, the total energy and thus also the corresponding mechanical jet power required for their inflation can be derived. Properly estimating their total extent is, however, non-trivial, prone to biases, nearly impossible for poor-quality data, and so far has been done manually by scientists. We present a novel machine-learning pipeline called Cavity Detection Tool (CADET), developed as an assistive tool that detects and estimates the sizes of X-ray cavities from raw Chandra images. The pipeline consists of a convolutional neural network trained for producing pixel-wise cavity predictions and a DBSCAN clustering algorithm, which decomposes the predictions into individual cavities. The convolutional network was trained using mock observations of early-type galaxies simulated to resemble real noisy Chandra-like images. The network's performance has been tested on simulated data obtaining an average cavity volume error of 14percent at an 89percent true-positive rate. For simulated images without any X-ray cavities inserted, we obtain a 5percent false-positive rate. When applied to real Chandra images, the pipeline recovered 93 out of 97 previously known X-ray cavities in nearby early-type galaxies and all 14 cavities in chosen galaxy clusters. Besides that, the CADET pipeline discovered seven new cavity pairs in atmospheres of early-type galaxies (IC4765, NGC533, NGC2300, NGC3091, NGC4073, NGC4125, and NGC5129) and a number of potential cavity candidates.

Návaznosti

GX21-13491X, projekt VaV
Název: Zkoumání žhavého vesmíru a porozumění kosmické zpětné vazbě (Akronym: EHU)
Investor: Grantová agentura ČR, Exploring the Hot Universe and Understanding Comic Feedback