PŘIBYLOVÁ, Lenka. Exploring Synchronization Mechanisms via Bifurcation Analysis – A Unified Approach Across Neuronal, Ecological and Physical Realms. Online. In Nikos Mastorakis. 2023 International Conference on Applied Mathematics & Computer Science (ICAMCS). 2024. vyd. Greece: IEEE, 2024, s. 1-9. ISBN 979-8-3503-2427-3. Dostupné z: https://dx.doi.org/10.1109/ICAMCS59110.2023.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Exploring Synchronization Mechanisms via Bifurcation Analysis – A Unified Approach Across Neuronal, Ecological and Physical Realms
Autoři PŘIBYLOVÁ, Lenka (203 Česká republika, garant, domácí).
Vydání 2024. vyd. Greece, 2023 International Conference on Applied Mathematics & Computer Science (ICAMCS), od s. 1-9, 9 s. 2024.
Nakladatel IEEE
Další údaje
Originální jazyk angličtina
Typ výsledku Stať ve sborníku
Obor 10102 Applied mathematics
Utajení není předmětem státního či obchodního tajemství
Forma vydání elektronická verze "online"
WWW URL URL
Organizační jednotka Přírodovědecká fakulta
ISBN 979-8-3503-2427-3
Doi http://dx.doi.org/10.1109/ICAMCS59110.2023
Klíčová slova anglicky synchronization; Morris–Lecar model; AC-driven Josephson junction model; predator-prey model with seasonal Allee effect; torus bifurcation; limit point of cycle bifurcation; Arnold tongue structure
Štítky Arnold tongues, bifurcation, Limit cycle, synchronization
Příznaky Mezinárodní význam, Recenzováno
Změnil Změnila: doc. RNDr. Lenka Přibylová, Ph.D., učo 9607. Změněno: 21. 2. 2024 10:00.
Anotace
Synchronization mechanisms, while inherently complex, are central to a wide range of dynamical systems, from neuronal networks to physical systems like superconductive junctions. The aim of this contribution is to introduce a unified approach using the continuation program, MatCont, to explore these phenomena through the lens of bifurcation theory, specifically employing Arnold tongues and limit points of cycle manifolds on tori as analytical tools. Our findings suggest that this approach may explain the synchronization scenarios in various fields. Firstly, we focus on networks of neurons connected by gap-junctions, which can be modeled as neurons excited by external alternating currents or by interconnected neurons. Whether addressing a single neuron or a complex network, our approach provides a comprehensive understanding of the possible synchronization scenarios. This methodology is also applied to shed light on bistability observed in in-phase and anti-phase synchronization patterns in neuronal networks. Our research proposes an explanation that these patterns could be linked to very high-frequency EEG signals observed near epileptic foci. While the definitive connection between these bistable synchronization patterns and very high-frequency oscillations is yet to be established, our methodology offers a promising direction for investigation, potentially contributing to a deeper understanding of pathological brain activity. Further demonstrating the applicability of our approach, we present its successful implementation in deciphering Shapiro steps in superconductive Josephson junctions and seasonal synchronization in population models. These applications underscore the power of our methodology not only in neuroscience but also in the broader context of complex dynamical systems. Through the exposition of this MatCont-based method for bifurcation analysis, we aim to inspire further utilization and development of this approach, catalyzing advancements in modeling and understanding synchronization mechanisms across a diverse range of systems.
Návaznosti
MUNI/A/1132/2022, interní kód MUNázev: Matematické a statistické modelování 7
Investor: Masarykova univerzita, Matematické a statistické modelování 7
MUNI/G/1213/2022, interní kód MUNázev: Mathematical modeling of very and ultra-fast oscillations in EEG signals
Investor: Masarykova univerzita, Mathematical modeling of very and ultra-fast oscillations in EEG signals, INTERDISCIPLINARY - Mezioborové výzkumné projekty
VytisknoutZobrazeno: 27. 4. 2024 21:54