J 2023

A Probabilistic Simulation Framework to Assess the Impacts of Ridesharing and Congestion Charging in New York City

KHULBE, Devashish, Chaogui KANG, Satish UKKUSURI a Stanislav SOBOLEVSKY

Základní údaje

Originální název

A Probabilistic Simulation Framework to Assess the Impacts of Ridesharing and Congestion Charging in New York City

Autoři

KHULBE, Devashish (356 Indie, domácí), Chaogui KANG, Satish UKKUSURI a Stanislav SOBOLEVSKY (112 Bělorusko, domácí)

Vydání

Data Science for Transportation, Springer, 2023, 2948-135X

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10103 Statistics and probability

Stát vydavatele

Singapur

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Kód RIV

RIV/00216224:14310/23:00133758

Organizační jednotka

Přírodovědecká fakulta

Klíčová slova anglicky

Commute behavior; Transportation planning; Mode choice; Mode shift; Ridesharing; Congestion surcharge

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 4. 4. 2024 08:46, Mgr. Marie Šípková, DiS.

Anotace

V originále

Understanding the holistic city-wide impact of planned transportation solutions and interventions is critical for decision making, but challenged by the complexity of the urban systems, as well as the quality of the available urban data. The cornerstone for such impact assessments is estimating the transportation mode-shift resulting from the intervention. Although transportation planning has well-established models for the mode-choice assessment such as a nested multinomial logit model, an individual choice simulation could be better suited for addressing the mode-shift allowing us to consistently account for individual preferences. Moreover, the available ground-truth data on the actual transportation choices is often incomplete or inconsistent. The present paper addresses those challenges by offering an individual mode-choice and mode-shift simulation model and the Bayesian inference framework, and demonstrates how impact assessments can be performed in the events of incomplete mobility data. It accounts for uncertainties in the data as well as the model estimate and translates them into uncertainties of the resulting mode-shift and the impacts. The framework is evaluated on the two intervention cases: introducing ride-sharing for-hire-vehicles in NYC as well the recent introduction of the Manhattan Congestion surcharge. It can be used to assess mode-shift and quantify the resulting economic, social and environmental implications for any urban transportation solutions and policies considered by decision-makers or transportation companies.

Návaznosti

EF16_019/0000822, projekt VaV
Název: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur
MUNI/J/0008/2021, interní kód MU
Název: Digital City
Investor: Masarykova univerzita, Digital City, MASH JUNIOR - MUNI Award In Science and Humanities JUNIOR