2024
Generalized Willmore energies, Q-curvatures, extrinsic Paneitz operators, and extrinsic Laplacian powers
BLITZ, Samuel Harris, A Rod GOVER a Andrew WALDRONZákladní údaje
Originální název
Generalized Willmore energies, Q-curvatures, extrinsic Paneitz operators, and extrinsic Laplacian powers
Autoři
BLITZ, Samuel Harris (840 Spojené státy, domácí), A Rod GOVER a Andrew WALDRON (garant)
Vydání
Communications in Contemporary Mathematics, World Scientific Publishing Company, 2024, 0219-1997
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10101 Pure mathematics
Stát vydavatele
Singapur
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 1.600 v roce 2022
Organizační jednotka
Přírodovědecká fakulta
UT WoS
001157533200001
Klíčová slova anglicky
Conformal geometry; extrinsic conformal geometry and hypersurface embeddings; conformally compact; Q-curvature; singular Yamabe problem; renormalized volume and anomaly; Willmore energy
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 16. 4. 2024 15:39, Mgr. Marie Šípková, DiS.
Anotace
V originále
Over forty years ago, Paneitz, and independently Fradkin and Tseytlin, discovered a fourth-order conformally invariant differential operator, intrinsically defined on a conformal manifold, mapping scalars to scalars. This operator is a special case of the so-termed extrinsic Paneitz operator defined in the case when the conformal manifold is itself a conformally embedded hypersurface. In particular, this encodes the obstruction to smoothly solving the five-dimensional scalar Laplace equation, and suitable higher dimensional analogs, on conformally compact structures with constant scalar curvature. Moreover, the extrinsic Paneitz operator can act on tensors of general type by dint of being defined on tractor bundles. Motivated by a host of applications, we explicitly compute the extrinsic Paneitz operator. We apply this formula to obtain: an extrinsically-coupled Q-curvature for embedded four-manifolds, the anomaly in renormalized volumes for conformally compact five-manifolds with negative constant scalar curvature, Willmore energies for embedded four-manifolds, the local obstruction to smoothly solving the five-dimensional singular Yamabe problem, and new extrinsically-coupled fourth- and sixth-order operators for embedded surfaces and four-manifolds, respectively.