2022
Prodromal Diagnosis of Lewy Body Diseases Based on the Assessment of Graphomotor and Handwriting Difficulties
GALAZ, Zoltan, Jiri MEKYSKA, Jan MUCHA, Vojtech ZVONCAK, Zdenek SMEKAL et. al.Základní údaje
Originální název
Prodromal Diagnosis of Lewy Body Diseases Based on the Assessment of Graphomotor and Handwriting Difficulties
Autoři
GALAZ, Zoltan, Jiri MEKYSKA (203 Česká republika), Jan MUCHA (203 Česká republika), Vojtech ZVONCAK (203 Česká republika), Zdenek SMEKAL (203 Česká republika), Marcos FAUNDEZ-ZANUY, Luboš BRABENEC (203 Česká republika, domácí), Ivona MORÁVKOVÁ (703 Slovensko, domácí) a Irena REKTOROVÁ (203 Česká republika, domácí)
Vydání
CHAM, Intertwining Graphonomics with Human Movements, od s. 255-268, 14 s. 2022
Nakladatel
SPRINGER INTERNATIONAL PUBLISHING AG
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
30210 Clinical neurology
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14110/22:00134722
Organizační jednotka
Lékařská fakulta
ISBN
978-3-031-19744-4
ISSN
UT WoS
000913319000019
Klíčová slova anglicky
Lewy body diseases; Online handwriting; Graphomotor difficulties; Handwriting difficulties; Machine learning; Prodromal diagnosis
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 5. 8. 2024 08:08, Mgr. Tereza Miškechová
Anotace
V originále
To this date, studies focusing on the prodromal diagnosis of Lewy body diseases (LBDs) based on quantitative analysis of graphomotor and handwriting difficulties are missing. In this work, we enrolled 18 subjects diagnosed with possible or probable mild cognitive impairment with Lewy bodies (MCI-LB), 7 subjects having more than 50% probability of developing Parkinson's disease (PD), 21 subjects with both possible/probable MCI-LB and probability of PD > 50%, and 37 age- and gender-matched healthy controls (HC). Each participant performed three tasks: Archimedean spiral drawing (to quantify graphomotor difficulties), sentence writing task (to quantify handwriting difficulties), and pentagon copying test (to quantify cognitive decline). Next, we parameterized the acquired data by various temporal, kinematic, dynamic, spatial, and task-specific features. And finally, we trained classification models for each task separately as well as a model for their combination to estimate the predictive power of the features for the identification of LBDs. Using this approach we were able to identify prodromal LBDs with 74% accuracy and showed the promising potential of computerized objective and non-invasive diagnosis of LBDs based on the assessment of graphomotor and handwriting difficulties.
Návaznosti
NU20-04-00294, projekt VaV |
|