FRIÁK, Martin, Jaroslav DRGOŇA, Jan FIKAR, Petr ŠESTÁK a Jana PAVLŮ. Competition of volumetric and surface-related energy contributions in phase transformations in Sn: an ab-initio and machine-learned-potential study. In AI MSE 2023 (Artifitial Intelligence in Material Science and Engineering). 2023.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Competition of volumetric and surface-related energy contributions in phase transformations in Sn: an ab-initio and machine-learned-potential study
Autoři FRIÁK, Martin (203 Česká republika, garant), Jaroslav DRGOŇA (703 Slovensko, domácí), Jan FIKAR, Petr ŠESTÁK (203 Česká republika) a Jana PAVLŮ (203 Česká republika, domácí).
Vydání AI MSE 2023 (Artifitial Intelligence in Material Science and Engineering), 2023.
Další údaje
Originální jazyk angličtina
Typ výsledku Konferenční abstrakt
Obor 10403 Physical chemistry
Stát vydavatele Česká republika
Utajení není předmětem státního či obchodního tajemství
Kód RIV RIV/00216224:14310/23:00133891
Organizační jednotka Přírodovědecká fakulta
Klíčová slova anglicky Pb-Sn alloys; molecular dynamics;
Změnil Změnila: doc. Mgr. Jana Pavlů, Ph.D., učo 10394. Změněno: 25. 3. 2024 00:16.
Anotace
The allotropic transformation from the higher-temperature tetragonal-body-centered beta-Sn to the lower-temperature diamond-lattice alpha-Sn upon cooling under the temperature of 13.2 °C is one of the most famous structural transformations known to our civilization. Interestingly, actual atomic-scale mechanisms of the transformation are much less studied and understood partly due to the 26% volumetric change accompanying this transformation and hindering a detailed examination by many experimental as well as theoretical methods. In order to shed new light on this centuries-long mystery, we have employed a combination of quantum-mechanical calculations and both machine-learned and classical atomistic potentials. In particular, a nanoparticle of undercooled beta-Sn was put into contact with a nanoparticle of the alpha-Sn surrounded by vacuum within quite a large computational cell. Our calculations were aimed at analyzing a competition of (i) volumetric energy contributions related to the thermodynamic energy difference between the phases, see also our recent paper [1], and (ii) surface-related and interface-related contributions to the free energies of both nanoparticles which are associated with their nano-scale size. Or preliminary results obtained for a simulation box containing a few hundreds of Sn atoms indicate that the surface-related contributions dominate for the studied nanoparticle sizes. In particular, both nanoparticles minimize their surface energies by re-shaping into close-to-spherical nanoparticles within a process accompanied by a partial loss of crystallinity. Qualitatively the same results were obtained by two approaches which we used. The first one was based on the machine-learned force fields obtained from the on-the-fly learning procedure during ab-initio molecular dynamics (MD) and the second one is characterized by the use of a classical MD potential. The VASP software [2,3] was employed for the former MD, while the LAMMPS package [4] for the latter. References [1] M. Friák et al., Computational Materials Science, 2022, 215, 111780. [2] G. Kresse, J. Hafner, Physical Review B, 1993, 47, 558. [3] G. Kresse, J. Furthmüller Physical Review B, 1996, 54, 11169. [4] A.P. Thompson et al. Comp. Phys. Comm., 2022, 271, 10817.
Návaznosti
90254, velká výzkumná infrastrukturaNázev: e-INFRA CZ II
VytisknoutZobrazeno: 12. 7. 2024 13:05