D 2023

Why is the winner the best?

EISENMANN, M., A. REINKE, V. WERU, M. D. TIZABI, F. ISENSEE et. al.

Základní údaje

Originální název

Why is the winner the best?

Autoři

EISENMANN, M., A. REINKE, V. WERU, M. D. TIZABI, F. ISENSEE, T. J. ADLER, S. ALI, V. ANDREARCZYK, M. AUBREVILLE, U. BAID, S. BAKAS, N. BALU, S. BANO, J. BERNAL, S. BODENSTEDT, A. CASELLA, V. CHEPLYGINA, M. DAUM, M. DE BRUIJNE, A. DEPEURSINGE, R. DORENT, J. EGGER, D. G. ELLIS, S. ENGELHARDT, M. GANZ, N. GHATWARY, G. GIRARD, P. GODAU, A. GUPTA, L. HANSEN, K. HARADA, M. HEINRICH, N. HELLER, A. HERING, A. HUAULME, P. JANNIN, A. E. KAVUR, O. KODYM, Michal KOZUBEK (203 Česká republika, domácí), J. LI, H. LI, J. MA, C. MARTIN-ISLA, B. MENZE, A. NOBLE, V. OREILLER, N. PADOY, S. PATI, K. PAYETTE, T. RAEDSCH, J. RAFAEL-PATINO, V. Singh BAWA, S. SPEIDEL, C. H. SUDRE, K. VAN WIJNEN, M. WAGNER, D. WEI, A. YAMLAHI, M. H. YAP, C. YUAN, M. ZENK, A. ZIA, D. ZIMMERER, D. AYDOGAN, B. BHATTARAI, L. BLOCH, R. BRUENGEL, J. CHO, C. CHOI, Q. DOU, I. EZHOV, C. M. FRIEDRICH, C. FULLER, R. R. GAIRE, A. GALDRAN, A. Garcia FAURA, M. GRAMMATIKOPOULOU, S. HONG, M. JAHANIFAR, I. JANG, A. KADKHODAMOHAMMADI, I. KANG, F. KOFLER, S. KONDO, H. KUIJF, M. LI, M. LUU, T. MARTINCIC, P. MORAIS, M. A. NASER, B. OLIVEIRA, D. OWEN, S. PANG, J. PARK, S. PARK, S. PLOTKA, E. PUYBAREAU, N. RAJPOOT, K. RYU, N. SAEED, A. SHEPHARD, P. SHI, D. STEPEC, R. SUBEDI, G. TOCHON, H. R. TORRES, H. URIEN, J. L. VILACA, K. A. WAHID, H. WANG, J. WANG, L. WANG, X. WANG, B. WIESTLER, M. WODZINSKI, F. XIA, J. XIE, Z. XIONG, S. YANG, Y. YANG, Z. ZHAO, K. MAIER-HEIN, P. F. JAEGER, A. KOPP-SCHNEIDER a L. MAIER-HEIN

Vydání

Vancouver, 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), od s. 19955-19966, 12 s. 2023

Nakladatel

IEEE COMPUTER SOC

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Forma vydání

elektronická verze "online"

Kód RIV

RIV/00216224:14310/23:00133939

Organizační jednotka

Přírodovědecká fakulta

ISBN

979-8-3503-0129-8

ISSN

UT WoS

001062531304027

Klíčová slova anglicky

cell microscopy; Medical and biological vision

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 24. 4. 2024 03:12, RNDr. Pavel Šmerk, Ph.D.

Anotace

V originále

International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from these competitions. Do they really generate scientific progress? What are common and successful participation strategies? What makes a solution superior to a competing method? To address this gap in the literature, we performed a multi-center study with all 80 competitions that were conducted in the scope of IEEE ISBI 2021 and MICCAI 2021. Statistical analyses performed based on comprehensive descriptions of the submitted algorithms linked to their rank as well as the underlying participation strategies revealed common characteristics of winning solutions. These typically include the use of multi-task learning (63%) and/or multi-stage pipelines (61%), and a focus on augmentation (100%), image preprocessing (97%), data curation (79%), and post-processing (66%). The "typical" lead of a winning team is a computer scientist with a doctoral degree, five years of experience in biomedical image analysis, and four years of experience in deep learning. Two core general development strategies stood out for highly-ranked teams: the reflection of the metrics in the method design and the focus on analyzing and handling failure cases. According to the organizers, 43% of the winning algorithms exceeded the state of the art but only 11% completely solved the respective domain problem. The insights of our study could help researchers (1) improve algorithm development strategies when approaching new problems, and (2) focus on open research questions revealed by this work.