J 2024

Brillouin light scattering anisotropy microscopy for imaging the viscoelastic anisotropy in living cells

KESHMIRI, Hamid, Domagoj CIKES, Markéta ŠÁMALOVÁ, Lukas SCHINDLER, Lisa-Marie APPEL et. al.

Základní údaje

Originální název

Brillouin light scattering anisotropy microscopy for imaging the viscoelastic anisotropy in living cells

Autoři

KESHMIRI, Hamid, Domagoj CIKES, Markéta ŠÁMALOVÁ (203 Česká republika, domácí), Lukas SCHINDLER, Lisa-Marie APPEL, Michal URBANEK, Ivan YUDUSHKIN, Dea SLADE, Wolfgang J WENINGER, Alexis PEAUCELLE, Josef PENNINGER a Kareem ELSAYAD

Vydání

Nature Photonics, Nature Research, 2024, 1749-4885

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10610 Biophysics

Stát vydavatele

Německo

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 35.000 v roce 2022

Organizační jednotka

Přírodovědecká fakulta

UT WoS

001145338600002

Klíčová slova anglicky

biophysics; optical spectroscopy; mechanical forces; growth; symmetry; reveals

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 11. 4. 2024 10:54, Mgr. Marie Šípková, DiS.

Anotace

V originále

Maintaining and modulating mechanical anisotropy is essential for biological processes. However, how this is achieved at the microscopic scale in living soft matter is not always clear. Although Brillouin light scattering (BLS) spectroscopy can probe the mechanical properties of materials, spatiotemporal mapping of mechanical anisotropies in living matter with BLS microscopy has been complicated by the need for sequential measurements with tilted excitation and detection angles. Here we introduce Brillouin light scattering anisotropy microscopy (BLAM) for mapping high-frequency viscoelastic anisotropy inside living cells. BLAM employs a radial virtually imaged phased array that enables the collection of angle-resolved dispersion in a single shot, thus enabling us to probe phonon modes in living matter along different directions simultaneously. We demonstrate a precision of 10 MHz in the determination of the Brillouin frequency shift, at a spatial resolution of 2 mu m. Following proof-of-principle experiments on muscle myofibres, we apply BLAM to the study of two fundamental biological processes. In plant cell walls, we observe a switch from anisotropic to isotropic wall properties that may lead to asymmetric growth. In mammalian cell nuclei, we uncover a spatiotemporally oscillating elastic anisotropy correlated to chromatin condensation. Our results highlight the role that high-frequency mechanics can play in the regulation of diverse fundamental processes in biological systems. We expect BLAM to find diverse applications in biomedical imaging and material characterization.

Návaznosti

90251, velká výzkumná infrastruktura
Název: CzechNanoLab II