KESHMIRI, Hamid, Domagoj CIKES, Markéta ŠÁMALOVÁ, Lukas SCHINDLER, Lisa-Marie APPEL, Michal URBANEK, Ivan YUDUSHKIN, Dea SLADE, Wolfgang J WENINGER, Alexis PEAUCELLE, Josef PENNINGER and Kareem ELSAYAD. Brillouin light scattering anisotropy microscopy for imaging the viscoelastic anisotropy in living cells. Nature Photonics. Nature Research, 2024, vol. 18, No 3, p. 1-13. ISSN 1749-4885. Available from: https://dx.doi.org/10.1038/s41566-023-01368-w.
Other formats:   BibTeX LaTeX RIS
Basic information
Original name Brillouin light scattering anisotropy microscopy for imaging the viscoelastic anisotropy in living cells
Authors KESHMIRI, Hamid, Domagoj CIKES, Markéta ŠÁMALOVÁ (203 Czech Republic, belonging to the institution), Lukas SCHINDLER, Lisa-Marie APPEL, Michal URBANEK, Ivan YUDUSHKIN, Dea SLADE, Wolfgang J WENINGER, Alexis PEAUCELLE, Josef PENNINGER and Kareem ELSAYAD.
Edition Nature Photonics, Nature Research, 2024, 1749-4885.
Other information
Original language English
Type of outcome Article in a journal
Field of Study 10610 Biophysics
Country of publisher Germany
Confidentiality degree is not subject to a state or trade secret
WWW URL
Impact factor Impact factor: 35.000 in 2022
Organization unit Faculty of Science
Doi http://dx.doi.org/10.1038/s41566-023-01368-w
UT WoS 001145338600002
Keywords in English biophysics; optical spectroscopy; mechanical forces; growth; symmetry; reveals
Tags rivok
Tags International impact, Reviewed
Changed by Changed by: Mgr. Marie Šípková, DiS., učo 437722. Changed: 11/4/2024 10:54.
Abstract
Maintaining and modulating mechanical anisotropy is essential for biological processes. However, how this is achieved at the microscopic scale in living soft matter is not always clear. Although Brillouin light scattering (BLS) spectroscopy can probe the mechanical properties of materials, spatiotemporal mapping of mechanical anisotropies in living matter with BLS microscopy has been complicated by the need for sequential measurements with tilted excitation and detection angles. Here we introduce Brillouin light scattering anisotropy microscopy (BLAM) for mapping high-frequency viscoelastic anisotropy inside living cells. BLAM employs a radial virtually imaged phased array that enables the collection of angle-resolved dispersion in a single shot, thus enabling us to probe phonon modes in living matter along different directions simultaneously. We demonstrate a precision of 10 MHz in the determination of the Brillouin frequency shift, at a spatial resolution of 2 mu m. Following proof-of-principle experiments on muscle myofibres, we apply BLAM to the study of two fundamental biological processes. In plant cell walls, we observe a switch from anisotropic to isotropic wall properties that may lead to asymmetric growth. In mammalian cell nuclei, we uncover a spatiotemporally oscillating elastic anisotropy correlated to chromatin condensation. Our results highlight the role that high-frequency mechanics can play in the regulation of diverse fundamental processes in biological systems. We expect BLAM to find diverse applications in biomedical imaging and material characterization.
Links
90251, large research infrastructuresName: CzechNanoLab II
PrintDisplayed: 16/6/2024 12:16