2024
Millisecond X-ray reflectometry and neural network analysis: unveiling fast processes in spin coating
SCHUMI-MAREČEK, David; Florian BERTRAM; Petr MIKULÍK; Devanshu VARSHNEY; Jiří NOVÁK et. al.Základní údaje
Originální název
Millisecond X-ray reflectometry and neural network analysis: unveiling fast processes in spin coating
Autoři
SCHUMI-MAREČEK, David; Florian BERTRAM; Petr MIKULÍK (203 Česká republika, domácí); Devanshu VARSHNEY (356 Indie, domácí); Jiří NOVÁK (203 Česká republika, domácí) a Stefan KOWARIK (garant)
Vydání
Journal of Applied Crystallography, International Union of Crystallography, 2024, 1600-5767
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10302 Condensed matter physics
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 5.200 v roce 2023
Kód RIV
RIV/00216224:14310/24:00135826
Organizační jednotka
Přírodovědecká fakulta
UT WoS
001208800100011
EID Scopus
2-s2.0-85189944139
Klíčová slova anglicky
millisecond XRR; neural network analysis; spin coating; X-ray reflectometry; X-ray reflectometry
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 11. 10. 2024 13:59, Mgr. Marie Novosadová Šípková, DiS.
Anotace
V originále
X-ray reflectometry (XRR) is a powerful tool for probing the structural characteristics of nanoscale films and layered structures, which is an important field of nanotechnology and is often used in semiconductor and optics manufacturing. This study introduces a novel approach for conducting quantitative high-resolution millisecond monochromatic XRR measurements. This is an order of magnitude faster than in previously published work. Quick XRR (qXRR) enables real time and in situ monitoring of nanoscale processes such as thin film formation during spin coating. A record qXRR acquisition time of 1.4 ms is demonstrated for a static gold thin film on a silicon sample. As a second example of this novel approach, dynamic in situ measurements are performed during PMMA spin coating onto silicon wafers and fast fitting of XRR curves using machine learning is demonstrated. This investigation primarily focuses on the evolution of film structure and surface morphology, resolving for the first time with qXRR the initial film thinning via mass transport and also shedding light on later thinning via solvent evaporation. This innovative millisecond qXRR technique is of significance for in situ studies of thin film deposition. It addresses the challenge of following intrinsically fast processes, such as thin film growth of high deposition rate or spin coating. Beyond thin film growth processes, millisecond XRR has implications for resolving fast structural changes such as photostriction or diffusion processes.
Návaznosti
EH22_008/0004572, projekt VaV |
| ||
GA22-04551S, projekt VaV |
|