2024
Recognition of Propaganda Techniques in Newspaper Texts: Fusion of Content and Style Analysis
HORÁK, Aleš, Radoslav SABOL, Ondřej HERMAN a Vít BAISAZákladní údaje
Originální název
Recognition of Propaganda Techniques in Newspaper Texts: Fusion of Content and Style Analysis
Autoři
HORÁK, Aleš (203 Česká republika, garant, domácí), Radoslav SABOL (703 Slovensko, domácí), Ondřej HERMAN (203 Česká republika, domácí) a Vít BAISA (203 Česká republika, domácí)
Vydání
Expert Systems with Applications, Elsevier, 2024, 0957-4174
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10200 1.2 Computer and information sciences
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 8.500 v roce 2022
Organizační jednotka
Fakulta informatiky
UT WoS
001235661700001
Klíčová slova anglicky
propaganda; disinformation; manipulative techniques; text style analysis; benchmark dataset
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 14. 9. 2024 10:14, doc. RNDr. Aleš Horák, Ph.D.
Anotace
V originále
Public texts aiming at reader manipulation for propaganda or disinformation purposes pose a significant threat to society. The ability to detect the presence of a specific manipulative technique in a text offers an informed warning to readers and guides them to carefully judge the actual statement. In this article, we address the problem of developing new models capable of analyzing newspaper articles for propagandistic features. We introduce a new large dataset of manipulative techniques obtained via gathering and human annotation of 8,646 newspaper articles in Czech, which represents one of the former Soviet influence area languages. The dataset allows both to train new methods to recognize propaganda and disinformation and offer a general comparable benchmark for the techniques. We evaluate the dataset against selected state-of-the-art machine learning approaches to provide high-performing baselines for detecting seventeen annotated manipulative techniques. We also present thorough measurements of inter-annotator agreements that approximate the difficulty level of each of the attributes. As a new finding, we propose a set of text style analysis features that lean on the assumption that each manipulation leads to a specific style pattern. We show that the style analysis improves the detection results for most of the manipulative techniques. The viability of the approach is also confirmed on the well-known QProp propaganda dataset, providing new state-of-the-art results.
Návaznosti
LM2023062, projekt VaV |
|