2022
Impact of physiological loads of arterial wall on nucleus deformation in endothelial cells: A computational study
JAKKA, Veera Venkata Satya Varaprasad a Jiri BURSAZákladní údaje
Originální název
Impact of physiological loads of arterial wall on nucleus deformation in endothelial cells: A computational study
Autoři
JAKKA, Veera Venkata Satya Varaprasad a Jiri BURSA
Vydání
Computers in Biology and Medicine, Oxford, Pergamon-Elsevier Science Press, 2022, 0010-4825
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 7.700
UT WoS
000788097600006
Klíčová slova anglicky
Cell mechanics; Biaxial load; Finite element model; Bendo-tensegrity; Shear load
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 11. 6. 2024 12:07, Mgr. Eva Dubská
Anotace
V originále
Introduction: Computational modeling can enhance the understanding of cell mechanics. To achieve this, finite element models of endothelial cells were proposed with shapes mimicking their natural state inside the endothelium within the cardiovascular system. Implementing the recently proposed bendo-tensegrity concept, these models consider flexural (buckling) as well as tensional/compressional behavior of microtubules and also incorporate the waviness of intermediate filaments.Materials and methods: Four different models were created (flat and domed hexagons, both regular and elongated in the direction of blood flow) and loaded by biaxial deformation, blood pressure, and shear load from blood flow - natural physiological conditions of the arterial endothelium - aiming to investigate the "in situ" mechanical response of the cell.Results: The impact of individual components of loads on the nucleus deformation (more specifically on the first principal strain) potentially influencing mechanotransduction was investigated and the role of the cytoskeleton and its constituents in the mechanical response of the endothelial cell was assessed. The results show (i) the impact of pulsating blood pressure on cyclic deformations of the nucleus, which increase substantially with decreasing axial pre-stretch of the cell, (ii) the importance of relatively low shear stresses in the cell response and nucleus deformation.Conclusion: Not only the pulsatile blood pressure but also the wall shear stress may induce significant deformation of the nucleus and thus trigger remodelation processes in endothelial cells.