JAKKA, Veera Venkata Satya Varaprasad a Jiri BURSA. Impact of physiological loads of arterial wall on nucleus deformation in endothelial cells: A computational study. Computers in Biology and Medicine. Oxford: Pergamon-Elsevier Science Press, 2022, roč. 143, Apr, s. 1-11. ISSN 0010-4825. Dostupné z: https://dx.doi.org/10.1016/j.compbiomed.2022.105266.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Impact of physiological loads of arterial wall on nucleus deformation in endothelial cells: A computational study
Autoři JAKKA, Veera Venkata Satya Varaprasad a Jiri BURSA.
Vydání Computers in Biology and Medicine, Oxford, Pergamon-Elsevier Science Press, 2022, 0010-4825.
Další údaje
Originální jazyk angličtina
Typ výsledku Článek v odborném periodiku
Obor 10201 Computer sciences, information science, bioinformatics
Stát vydavatele Velká Británie a Severní Irsko
Utajení není předmětem státního či obchodního tajemství
WWW URL
Impakt faktor Impact factor: 7.700
Doi http://dx.doi.org/10.1016/j.compbiomed.2022.105266
UT WoS 000788097600006
Klíčová slova anglicky Cell mechanics; Biaxial load; Finite element model; Bendo-tensegrity; Shear load
Štítky CF CELLIM, ne MU
Příznaky Mezinárodní význam, Recenzováno
Změnil Změnila: Mgr. Eva Dubská, učo 77638. Změněno: 11. 6. 2024 12:07.
Anotace
Introduction: Computational modeling can enhance the understanding of cell mechanics. To achieve this, finite element models of endothelial cells were proposed with shapes mimicking their natural state inside the endothelium within the cardiovascular system. Implementing the recently proposed bendo-tensegrity concept, these models consider flexural (buckling) as well as tensional/compressional behavior of microtubules and also incorporate the waviness of intermediate filaments.Materials and methods: Four different models were created (flat and domed hexagons, both regular and elongated in the direction of blood flow) and loaded by biaxial deformation, blood pressure, and shear load from blood flow - natural physiological conditions of the arterial endothelium - aiming to investigate the "in situ" mechanical response of the cell.Results: The impact of individual components of loads on the nucleus deformation (more specifically on the first principal strain) potentially influencing mechanotransduction was investigated and the role of the cytoskeleton and its constituents in the mechanical response of the endothelial cell was assessed. The results show (i) the impact of pulsating blood pressure on cyclic deformations of the nucleus, which increase substantially with decreasing axial pre-stretch of the cell, (ii) the importance of relatively low shear stresses in the cell response and nucleus deformation.Conclusion: Not only the pulsatile blood pressure but also the wall shear stress may induce significant deformation of the nucleus and thus trigger remodelation processes in endothelial cells.
VytisknoutZobrazeno: 22. 7. 2024 10:21