2023
Sex Determination of Human Nails Based on Attenuated Total Reflection Fourier Transform Infrared Spectroscopy in Forensic Context
MITU, Bilkis, Václav TROJAN a Lenka HALÁMKOVÁZákladní údaje
Originální název
Sex Determination of Human Nails Based on Attenuated Total Reflection Fourier Transform Infrared Spectroscopy in Forensic Context
Autoři
MITU, Bilkis (840 Spojené státy), Václav TROJAN (203 Česká republika, domácí) a Lenka HALÁMKOVÁ (203 Česká republika)
Vydání
ACS SENSORS, UNITED STATES, AMER CHEMICAL SOC, 2023, 2379-3694
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10400 1.4 Chemical sciences
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 8.900 v roce 2022
Organizační jednotka
Farmaceutická fakulta
UT WoS
001116755500001
Klíčová slova anglicky
ATR FT-IR spectroscopy; machine learning; artificial neural network (ANN); partial least-square discriminant analysis (PLS-DA); male; female
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 10. 7. 2024 08:44, Mgr. Daniela Černá
Anotace
V originále
This study reports on the successful use of a machine learning approach using attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy for the classification and prediction of a donor's sex from the fingernails of 63 individuals. A significant advantage of ATR FT-IR is its ability to provide a specific spectral signature for different samples based on their biochemical composition. The infrared spectrum reveals unique vibrational features of a sample based on the different absorption frequencies of the individual functional groups. This technique is fast, simple, non-destructive, and requires only small quantities of measured material with minimal-to-no sample preparation. However, advanced multivariate techniques are needed to elucidate multiplex spectral information and the small differences caused by donor characteristics. We developed an analytical method using ATR FT-IR spectroscopy advanced with machine learning (ML) based on 63 donors' fingernails (37 males, 26 females). The PLS-DA and ANN models were established, and their generalization abilities were compared. Here, the PLS scores from the PLS-DA model were used for an artificial neural network (ANN) to create a classification model. The proposed ANN model showed a greater potential for predictions, and it was validated against an independent dataset, which resulted in 92% correctly classified spectra. The results of the study are quite impressive, with 100% accuracy achieved in correctly classifying donors as either male or female at the donor level. Here, we underscore the potential of ML algorithms to leverage the selectivity of ATR FT-IR spectroscopy and produce predictions along with information about the level of certainty in a scientifically defensible manner. This proof-of-concept study demonstrates the value of ATR FT-IR spectroscopy as a forensic tool to discriminate between male and female donors, which is significant for forensic applications.