2024
A Comparison of Vulnerability Feature Extraction Methods from Textual Attack Patterns
OTHMAN, Refat T A, Bruno ROSSI a Barbara RUSSOZákladní údaje
Originální název
A Comparison of Vulnerability Feature Extraction Methods from Textual Attack Patterns
Autoři
OTHMAN, Refat T A, Bruno ROSSI a Barbara RUSSO
Vydání
50th Euromicro Conference Series on Software Engineering and Advanced Applications (SEAA), 2024
Nakladatel
IEEE
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10200 1.2 Computer and information sciences
Utajení
není předmětem státního či obchodního tajemství
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 7. 8. 2024 10:19, Bruno Rossi, PhD
Anotace
V originále
Nowadays, threat reports reported by cybersecurity vendors incorporate detailed descriptions of attacks within unstructured text. Knowing vulnerabilities that are related to these reports helps cybersecurity researchers and practitioners understand and adjust to evolving attacks and develop mitigation plans for them. This paper aims to aid cybersecurity researchers and practitioners in choosing attack extraction methods to enhance the monitoring and sharing of threat intelligence. In this work, we examine five existing extraction methods and find that Term Frequency-Inverse Document Frequency (TFIDF) outperforms the other four methods with a precision of 75% and an F1 score of 64%. We obtain that when we increase the class labels, all methods perform worse regarding F1 score drops. The findings offer valuable insights to the cybersecurity community, and our research can aid cybersecurity researchers in evaluating and comparing the effectiveness of upcoming extraction methods.